小明最近在研究压缩算法。
他知道,压缩的时候如果能够使得数值很小,就能通过熵编码得到较高的压缩比。
然而,要使数值很小是一个挑战。
最近,小明需要压缩一些正整数的序列,这些序列的特点是,后面出现的数字很大可能是刚出现过不久的数字。对于这种特殊的序列,小明准备对序列做一个变换来减小数字的值。
变换的过程如下:
从左到右枚举序列,每枚举到一个数字,如果这个数字没有出现过,刚将数字变换成它的相反数,如果数字出现过,则看它在原序列中最后的一次出现后面(且在当前数前面)出现了几种数字,用这个种类数替换原来的数字。
比如,序列(a1, a2, a3, a4, a5)=(1, 2, 2, 1, 2)在变换过程为:
a1: 1未出现过,所以a1变为-1;
a2: 2未出现过,所以a2变为-2;
a3: 2出现过,最后一次为原序列的a2,在a2后、a3前有0种数字,所以a3变为0;
a4: 1出现过,最后一次为原序列的a1,在a1后、a4前有1种数字,所以a4变为1;
a5: 2出现过,最后一次为原序列的a3,在a3后、a5前有1种数字,所以a5变为1。
现在,给出原序列,请问,按这种变换规则变换后的序列是什么。
输入格式:
输入第一行包含一个整数n,表示序列的长度。
第二行包含n个正整数,表示输入序列。
输出格式:
输出一行,包含n个数,表示变换后的序列。
例如,输入:
5
1 2 2 1 2
程序应该输出:
-1 -2 0 1 1
再例如,输入:
12
1 1 2 3 2 3 1 2 2 2 3 1
程序应该输出:
-1 0 -2 -3 1 1 2 2 0 0 2 2
数据规模与约定
对于30%的数据,n<=1000;
对于50%的数据,n<=30000;
对于100%的数据,1 <=n<=100000,1<=ai<=10^9
解题思路:
如果暴力写的话,复杂度是n^2 ,估计只能过30%的数据。我看了下网上其他题解基本都是这么个写法。思路就是用map1记录某数字上一次出现的位置。遍历该位置到上一次出现的位置,数字出现的种类。详见代码1
本题目的正解应该是线段树。复杂度nlogn 能过所有数据 线段树模版题 详见代码2
代码1(暴力)
import java.lang.reflect.Array;
import java.util.*;
public class main {
public static void main(String[] args) {
int n;
Map mp1=new HashMap();
Map mp2=new HashMap();
Scanner cin=new Scanner(System.in);
int a[]=new int[1008611];
int ans[]=new int [1008611];
n=cin.nextInt();
for(int i=1;i<=n;i++) {
a[i]=cin.nextInt();
if(mp1.containsKey(a[i])) {
int cnt=0;
mp2.clear();
for(int j=i-1;j>(int)mp1.get(a[i]);j--) {
System.out.println(i+" "+mp2.get(a[j]));
if(!mp2.containsKey(a[j])) {
cnt++;
mp2.put(a[j], 1);
}
}
mp1.put(a[i],i);
ans[i]=cnt;
}
else {
mp1.put(a[i], i);
ans[i]=-1*a[i];
}
}
for(int i=1;i<=n;i++) {
if(i==1) {
System.out.print(ans[i]);
}
else {
System.out.print(" "+ans[i]);
}
}
}
}
代码2
import java.lang.reflect.Array;
import java.util.*;
public class main {
public static final int maxn = 1000000+5;
public static int a[]=new int[maxn];
public static int tree[]=new int[maxn*4];
// 假设层数 M = log 2 (n - 1), 树节点数就要开2倍了
// 循环中遍历最后一个结点的的子节点(虽然不存在) 需要 2n * 2的数组大小
public static int n, maxpoint;
public static void init() {
maxpoint = 1;
while (maxpoint < n) maxpoint <<= 1; //比最后一个结点大的2的倍数个结点
Arrays.fill(tree, 0);
Arrays.fill(a, 0);
}
public static void update(int k, int addnum) { // addnum 在出现前边时更新所有子节点 + 1, 出现后边时 所有子节点都 - 1
k += maxpoint - 1; // 每个节点都当作根节点一样遍历子节点
tree[k] += addnum;
while (k>0) {
k = (k - 1) >> 1; // 访问父节点直到根结点
tree[k] += addnum;
}
}
public static int query(int a, int b, int k, int l, int r) {
if(a == b || (r <= a || l >= b) ) return 0; // 不符合查询条件 返回 0
if (a <= l && r <= b) return tree[k]; // 子区域就直接返回
else {
int mid = (l + r) >> 1;
return query(a, b, (k << 1) + 1, l, mid) + query(a, b, (k + 1) << 1 , mid, r);
}
}
public static void main(String[] args) {
int temp;
Map mp=new HashMap();
Scanner cin=new Scanner(System.in);
n=cin.nextInt();
init();
for (int i = 0; i < n; i++) {
temp=cin.nextInt();
if (mp.containsKey(temp)) {
int pre = (int)mp.get(temp);
a[i] = query(pre + 1, i, 0, 0, maxpoint);
update(pre, -1);
}
else {
a[i] = -temp;
}
mp.put(temp, i);
update(i, 1);
}
for (int i = 0; i < n; i++)
System.out.print(a[i]+" ");
}
}