Ayoub had an array aa of integers of size nn and this array had two interesting properties:
- All the integers in the array were between ll and rr (inclusive).
- The sum of all the elements was divisible by 33.
Unfortunately, Ayoub has lost his array, but he remembers the size of the array nn and the numbers ll and rr, so he asked you to find the number of ways to restore the array.
Since the answer could be very large, print it modulo 109+7109+7 (i.e. the remainder when dividing by 109+7109+7). In case there are no satisfying arrays (Ayoub has a wrong memory), print 00.
Input
The first and only line contains three integers nn, ll and rr (1≤n≤2⋅105,1≤l≤r≤1091≤n≤2⋅105,1≤l≤r≤109) — the size of the lost array and the range of numbers in the array.
Output
Print the remainder when dividing by 109+7109+7 the number of ways to restore the array.
dp[0][i],dp[1][i],dp[2]][i]分别表示到第i位为止的和取余结果为0、1、2的种类数
#include <iostream>
#include<cstdio>
#define ll long long
#include<algorithm>
#include<cmath>
#define inf 0x3f3f3f3f
#include<cstring>
using namespace std;
ll dp[200861][5];
const int mod=1e9+7;
int main(){
ll n,l,r;
ll a=0,b=0,c=0;
cin>>n>>l>>r;
a=r/3-(l-1)/3;
b=(r+1)/3-(l-1+1)/3;
c=(r+2)/3-(l-1+2)/3;
dp[1][0]=a;
dp[1][1]=b;
dp[1][2]=c;
for(ll i=2;i<=n;i++){
dp[i][0]=(dp[i-1][0]*a%mod+dp[i-1][1]*c%mod+dp[i-1][2]*b%mod)%mod;
dp[i][1]=(dp[i-1][0]*b%mod+dp[i-1][1]*a%mod+dp[i-1][2]*c%mod)%mod;
dp[i][2]=(dp[i-1][0]*c%mod+dp[i-1][1]*b%mod+dp[i-1][2]*a%mod)%mod;
}
cout<<dp[n][0]<<endl;
return 0;
}