C. Ayoub and Lost Array(dp)

Ayoub had an array aa of integers of size nn and this array had two interesting properties:

  • All the integers in the array were between ll and rr (inclusive).
  • The sum of all the elements was divisible by 33.

Unfortunately, Ayoub has lost his array, but he remembers the size of the array nn and the numbers ll and rr, so he asked you to find the number of ways to restore the array.

Since the answer could be very large, print it modulo 109+7109+7 (i.e. the remainder when dividing by 109+7109+7). In case there are no satisfying arrays (Ayoub has a wrong memory), print 00.

Input

The first and only line contains three integers nn, ll and rr (1≤n≤2⋅105,1≤l≤r≤1091≤n≤2⋅105,1≤l≤r≤109) — the size of the lost array and the range of numbers in the array.

Output

Print the remainder when dividing by 109+7109+7 the number of ways to restore the array.

dp[0][i],dp[1][i],dp[2]][i]分别表示到第i位为止的和取余结果为0、1、2的种类数

#include <iostream>
#include<cstdio>
#define ll long long
#include<algorithm>
#include<cmath>
#define inf 0x3f3f3f3f
#include<cstring>
using namespace std;
ll dp[200861][5];
const int mod=1e9+7;
int main(){
    ll n,l,r;
    ll a=0,b=0,c=0;
    cin>>n>>l>>r;
    a=r/3-(l-1)/3;
    b=(r+1)/3-(l-1+1)/3;
    c=(r+2)/3-(l-1+2)/3;
    dp[1][0]=a;
    dp[1][1]=b;
    dp[1][2]=c;
    for(ll i=2;i<=n;i++){
        dp[i][0]=(dp[i-1][0]*a%mod+dp[i-1][1]*c%mod+dp[i-1][2]*b%mod)%mod;
        dp[i][1]=(dp[i-1][0]*b%mod+dp[i-1][1]*a%mod+dp[i-1][2]*c%mod)%mod;
        dp[i][2]=(dp[i-1][0]*c%mod+dp[i-1][1]*b%mod+dp[i-1][2]*a%mod)%mod;

    }
    cout<<dp[n][0]<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值