- 博客(9)
- 收藏
- 关注
原创 Pytorch中向量的索引
此类格式的作用是从原始向量中 按照每个维度的起始位置,截取出一个小向量,这类是在代码中最常见的做法。需要给出每个维度上的起始位置,在后面全选的维度可以忽略。举例来说,其中,每个维度的起始位置是左闭右开,单独:一个符号代表全选,忽略也代表全选,即同时,使用 None 作为索引有特定的作用,通常用于添加新的维度。这种用法称为“扩展维度”或“增加维度”。具体来说,当你在张量索引中使用 None 时,它会在指定的位置插入一个新的维度,使得张量的形状发生变化。
2024-10-27 20:35:34 142 1
原创 坐标矩阵的建立
该矩阵由相对x最小坐标、相对x最大坐标、相对y最小坐标、相对y最大坐标,相对x中心坐标、相对y中心坐标,以及高度和宽度的映射(用于表示高度和宽度的比列)。其中相对坐标设置这么多不同类型的原因在于,相对最小值: 表示每个像素块的左上角位置。相对最大值: 表示每个像素块的右下角位置,而相对中心值则表示每个像素块的中心位置,相对最小值和相对最大值不仅提供了每个像素的具体位置,还允许网络更丰富地编码空间信息,包括大小和位置信息。这种丰富的编码能够帮助网络在处理与位置相关的任务时更具表现力。
2024-07-26 15:22:37 255
原创 torch.nn.Dataparaller笔记
nn.Dataparaller简称DP,是Pytorch中的单进程多卡并行化方式,只能应用在单机多卡应用场景下,但是使用简单,容易上手。但是官方推荐使用DDP来进行并行化,即使是在单机多卡应用场景下。在DP中,多个GPU只在前向传播和反向传播时起到了帮助计算的作用,而参数优化等过程是在核心GPU上单独进行的,DP仅维护了一个优化器,并没有实现完全并行。
2024-03-23 09:57:30 1629 1
原创 目标检测任务中对正负样本的理解
目标检测任务中,无论是二阶段还是一阶段模型大多都是基于锚框(anchor)的结构,只有DETR相关的一些模型是直接预测边界框。而基于锚框结构的目标检测模型,都会存在正负样本的概念。锚框是为了能够更好的预测图片中物体的位置,在图片中以每个像素为中心提前设定了不同尺寸的预备边界框,这些预备边界框被成为锚框。基于锚框的目标检测模型从本质上来说,就是从这些锚框中选择出最贴近真实边界框的锚框a,并预测锚框a 与真实边界框的偏移量,结合锚框a 和 预测的偏移量得到模型预测的边界框。
2024-03-23 09:55:40 2139
原创 python路径
在终端运行python文件时,系统路径只包含该文件的上一级文件夹所在路径,与运行python文件时所在路径无关。可以看到第一个系统路径只与CR这个文件有关,与在哪运行无关。
2023-06-06 11:46:17 71
原创 傻瓜式解决pycrypto安装错误
替换为豆瓣源仅解决错误为error: Microsoft Visual C++ 14.0 is required时,cmd中错误情况如下图所示:解决方法:将pip install pycrypto替换为pip install -i https://pypi.douban.com/simple/ pycryptodome
2021-05-20 19:44:19 7247 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人