1.题目描述:假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
2.思路::f(n) = f(n-1) + f(n-2),因为下一步要到达第n级阶梯只有通过两种方式,一是从第n-1阶跨1阶到达,二是从第n-2阶跨2阶到达,而到达n-1阶和n-2阶的组合数分别为dp(n-1)和dp(n-2),加起来则为到达n阶的结果
3.Code:
class Solution {
public:
int climbStairs(int n) {
vector dp(n+3);
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++) //从第3阶到第n阶
dp[i] = dp[i-1] + dp[i-2];
return dp[n];
}
};
结果: