选择排序
1、简单选择排序
算法思想:在无序序列a[0…n],第i趟排序从a[i…n]中选择关键字最小的元素与a[i]交换,每一趟排序都能确定一个元素的最终位置,经过n-1趟之后整个无序序列就会变成有序序列。
形如序列{45,14,27,71,12}:
第一趟:{12,14,27,71,45}
第二趟:{12,14,27,71,45}
第三趟:{12,14,27,71,45}
第四趟:{12,14,27,45,71}
它会在每一趟从剩下的无序序列中选出最小的元素放在最终的位置。
C语言代码:
#include<stdio.h>
#include<string.h>
#define len 5
void swap(int &a, int &b)
{
int temp;
temp = a;
a = b;
b = temp;
}
//简单选择排序
void selectSort(int a[])
{
int i,j,min;
for(i=0;i<len;i++)
{
//记录最小元素位置
min = i;
//在a[i....n-1]中选择最小的元素
for(j=i+1;j<len;j++)
{
if(a[j] < a[min])
{
//更新最小元素位置
min = j;
}
}
if (min != i)
{
//与第i个位置交换
swap(a[i], a[min]);
}
}
}
int main()
{
int a[] = {45,14,27,71,12};
int i;
printf("未排序前:\n");
for(i=0;i<len;i++)
{
printf("%d ", a[i]);
}
printf("\n经过排序后:\n");
selectSort(a);
for(i=0;i<len;i++)
{
printf("%d ", a[i]);
}
}
2、堆排序
堆排序是一种选择排序,在排序过程中,将将a[0…n]看成是一棵完全二叉树的顺序存储结构(如不知道完全二叉树请自行了解)。堆的结构可以分为大根堆和小根堆,在此对大根堆做出详解。
大根堆:在一棵二叉树中,每个结点的值都大于其做左孩子和右孩子结点的值。如下图:
同时映射的数组为{90,88,65,78,76,17,34,12,23,49}
算法思想:堆排序的关键是如何构造初始堆,n个结点的完全二叉树,对第(n/2向下取整)个结点为根的子树筛选,如果根节点的关键字小于左右子树中关键字,则交换,使该子树成为大顶堆。接下来依次将左右子树子结点中较大值与之交换,当交换后可能会破坏下一级的堆,那么需要继续用上述方法构造下一级的堆,直到以该结点为根的子树构成堆为止。
假定数组序列为{88,34,65,78,49,23,90,12,17,76},则第一趟调整大顶堆如下图所示;
反复利用上述调整堆的方法建堆,直到根节点。
C语言代码:
#include<stdio.h>
#include<string.h>
#define len 10
void swap(int &a, int &b)
{
int temp;
temp = a;
a = b;
b = temp;
}
//堆排序
void adjustDown(int a[], int k, int length)
{
int i,j,temp;
for(temp=a[k];2*k+1<length;k=i)
{
i=2*k+1;
//选择元素较大的子节点下标
if (i<length-1 && a[i]<a[i+1])
{
i++;
}
//如果父结点元素大于子节点的元素则筛选结束
if(temp >= a[i])
{
break;
} else {
//将a[i]调整到双亲结点上
a[k] = a[i];
}
}
//被筛选结点的值放入最终位置
a[k] = temp;
}
void heapSort(int a[], int length)
{
int i;
//初始建堆
for(i=length/2;i>=0;--i)
{
adjustDown(a, i, length);
}
//n-1趟的交换和建堆过程
for(i=length-1;i>0;--i)
{
//堆顶元素和堆底元素交换
swap(a[0], a[i]);
//将破坏后的堆再次调整为大顶堆
adjustDown(a, 0, i);
}
}
int main()
{
int a[] = {88,34,65,78,49,23,90,12,17,76};
int i;
printf("未排序前:\n");
for(i=0;i<len;i++)
{
printf("%d ", a[i]);
}
printf("\n经过排序后:\n");
heapSort(a, len);
for(i=0;i<len;i++)
{
printf("%d ", a[i]);
}
}
如果以上程序或解释有问题,请务必指出互相交流。