DeepSeek深度揭秘:从基础认知到技术核心剖析

系列篇章💥

No.文章
1DeepSeek深度揭秘:从基础认知到技术核心剖析
2DeepSeek操作指南:基础操作与应用初体验
3DeepSeek应用场景深度挖掘:多领域的智慧赋能
4DeepSeek提示词攻略:高效交互的关键密码
5DeepSeek提示语避坑:新手提示误区指南与创新策略
6DeepSeek进阶之路:复杂任务处理与协同创新
7DeepSeek未来展望与技术发展趋势洞察

一、引言

在当今科技飞速发展的时代,AI大模型已成为推动各行业变革的核心力量。从智能语音助手到图像识别技术,从自动驾驶到智能医疗,AI大模型的应用无处不在,深刻地改变着人们的生活和工作方式。在众多AI大模型中,DeepSeek异军突起,凭借其独特的技术和卓越的性能,引起了广泛的关注和热议。

本专栏致力于深入剖析DeepSeek技术,为广大AI技术爱好者、开发者以及行业从业者提供全面且深入的技术解读与应用指导。无论你是刚刚踏入AI领域的新手,还是寻求技术突破的资深专家,都能在本专栏中找到有价值的信息,助力你在AI技术的探索之路上不断前行。

在这里插入图片描述

二、DeepSeek全景概览

(一)公司背景与发展脉络

DeepSeek成立于2023年7月17日,由著名量化私募幻方基金支持,雄厚的资金实力为其技术研发提供了强大的后盾。自成立以来,DeepSeek在AI领域不断深耕,致力于通用人工智能(AGI)的研发与应用。

  • 2024年1月5日,公司发布首个AI大模型DeepSeek LLM,随后在同年5月7日推出DeepSeek-V2,一发布便开源,其在中文综合能力(AlignBench)开源模型中表现卓越,与GPT-4-Turbo、文心4.0等闭源模型在评测中处于同一梯队;英文综合能力(MT-Bench)与最强的开源模型LLaMA3-70B相当,在知识、数学、推理、编程等榜单中也位居前列。

  • 2024年12月26日,DeepSeek-V3发布并开源,该模型在多项评测中表现出色,尤其在知识类任务、长文本理解、编程和数学运算等领域,性能接近甚至超越国际顶尖闭源模型。

  • 2025年1月20日,全新的推理模型DeepSeek-R1正式发布并开源,效果媲美OpenAI o1,再次震惊海外,在AI领域掀起了新的热潮。

(二)DeepSeek在AI领域的定位与影响力

DeepSeek在AI领域定位于通用人工智能的研发,旨在打造功能强大、应用广泛的大模型,为各行业提供智能化解决方案。与其他AI企业相比,DeepSeek具有独特的优势。

  • 其一,强大的技术研发能力,不断推出创新的模型和算法,提升模型的性能和应用效果;
  • 其二,开源的发展策略,通过开源模型和技术,促进了AI领域的技术交流与合作,推动了整个行业的发展;
  • 其三,对市场需求的敏锐洞察力,能够快速响应市场变化,将技术应用于实际场景,满足不同用户的需求。

DeepSeek的发展对AI行业产生了深远的影响。一方面,它推动了技术的创新与进步,促使其他企业加大研发投入,提升自身技术水平,从而推动整个行业的发展;另一方面,DeepSeek的开源策略促进了技术的共享与传播,降低了AI技术的应用门槛,使得更多的企业和开发者能够受益于AI技术,加速了AI技术在各个领域的普及和应用。

(三)DeepSeek 推理模型与通用模型

在大语言模型的技术版图中,推理模型与通用模型作为两大关键类别,各有千秋。它们在技术原理、功能特性以及适用场景上,都有着明显区别。

1. 推理模型

推理模型是在传统大语言模型基础上的进阶形态,核心在于强化了推理、逻辑分析和决策能力。为实现这一突破,它融合了强化学习、神经符号推理、元学习等前沿技术。

  • 强化学习通过与环境不断交互,依据奖励机制来优化自身决策策略,提升决策的精准度与有效性;
  • 神经符号推理将神经网络强大的感知能力与符号系统严谨的逻辑推理相结合,显著提升模型在语义理解和逻辑推导方面的表现;
  • 元学习则赋予模型快速掌握新知识、新技能的能力,使其能在不同任务和场景中迅速适应。

DeepSeek - R1 就是推理模型的典型代表,在逻辑推理、数学推理和实时问题解决等领域表现卓越。比如在解答复杂数学问题时,DeepSeek - R1 能够凭借其强大的逻辑分析能力,快速剖析问题本质,找到解题思路并准确推导答案。

2. 通用模型

通用模型广泛应用于大多数常见任务,主要侧重于语言生成、上下文理解和自然语言处理。这类模型通过对海量文本数据的深度学习,掌握语言的内在规律,从而生成符合需求的内容。

  • 不过,相较于推理模型,其在复杂推理和决策能力上存在一定短板。以 GPT - 3、GPT - 4(OpenAI)、 BERT(Google)以及 DeepSeek - V3 为例,它们在语言生成、语言理解、文本分类、翻译等任务中表现出色。
  • 例如,GPT - 4 能根据给定主题或提示,创作出富有创意且连贯的文本,但在处理数学证明这类需要严密逻辑推导的任务时,往往难以达到推理模型的水准。
3. 不同维度领域对比

在这里插入图片描述

4. 链式思维与模型分类

CoT(Chain - of - Thought)链式思维的出现,为大模型的分类提供了新视角,将其分为 “概率预测(快速反应)” 模型和 “链式推理(慢速思考)” 模型。前者适用于快速反馈和即时任务,能在短时间内快速响应简单问题;后者通过深度推理解决复杂问题,面对复杂任务时展现出强大的分析和解决能力。了解这两类模型的差异,有助于用户根据具体任务需求,精准选择合适的模型,实现最佳应用效果。
在这里插入图片描述

5. 提示语策略差异

在使用提示语(Prompt)时,推理模型和通用模型也有明显区别:

  • 推理模型提示语更为简洁,用户只需明确阐述任务目标和需求即可。这是因为推理模型经过大量训练,已内化推理逻辑,能够自主理解任务并生成结构化的推理过程。若强行拆解步骤,反而可能干扰模型的自主推理能力,限制其发挥。
  • 通用模型需要显式引导推理步骤,比如通过 CoT 提示,否则可能跳过关键逻辑,导致结果不准确。在实际应用中,通用模型常依赖提示语来弥补推理能力的不足,如要求其分步思考、提供示例等,以帮助模型更好地完成任务。
6. 提示语避免误区
  • 不要对推理模型使用“启发式”提示(如角色扮演),可能干扰其逻辑主线。
  • 不要对通用模型“过度信任”(如直接询问复杂推理问题,需分步验证结果)。

三、DeepSeek-R1模型深度解析

(一)模型架构探秘

DeepSeek-R1采用了先进的Transformer架构,并在此基础上进行了多项创新改进。Transformer架构以其强大的并行计算能力和对长序列数据的处理优势,已成为现代大语言模型的基础架构。其核心的自注意力机制(Self-Attention)能够捕捉输入序列中任意两个位置之间的依赖关系,从而更好地理解上下文信息。DeepSeek-R1在继承Transformer架构的基础上,对注意力机制、模型结构和计算效率等多个方面进行了优化和改进,使其在处理复杂任务时表现更加出色。

1. 优化的注意力机制

DeepSeek-R1对注意力机制进行了显著优化。传统的Transformer模型虽能处理长序列数据,但在应对极长输入时,容易出现信息丢失或注意力分散的状况。DeepSeek-R1通过以下两种方式对注意力机制进行了改进:

  • 多头注意力机制DeepSeek-R1采用了多头注意力机制,通过多个头并行计算,能够从不同的角度关注输入序列的不同部分,从而更全面地捕捉文本信息。每个注意力头可以专注于特定的特征或上下文,使得模型能够更好地理解文本的语义结构。这种机制类似于多个专家从不同视角分析同一段文本,最终将各自的见解融合,形成更全面的理解。(例如,在处理一篇新闻报道时,不同的注意力头可以分别聚焦于事件主体、发生时间、地点以及背后的影响等不同关键要素。)
  • 稀疏注意力:为了进一步提升效率,DeepSeek-R1引入了稀疏注意力机制。这种机制允许模型在计算注意力分数时只关注输入序列中的关键部分,从而减少不必要的计算量,同时保持对长序列数据的有效处理。稀疏注意力通过限制每个token只能关注到序列中的一部分token,而不是整个序列,从而显著降低了计算复杂度,尤其适用于处理超长文本。(以处理超长的学术论文为例,模型可以精准定位到核心论点、实验数据等关键内容,避免在一些无关紧要的叙述上耗费过多计算资源。)

这些改进让DeepSeek-R1在处理长篇文章时,能够更好地把握文章的整体结构和语义,进而生成更加准确、连贯的回答。

2. 创新的模型结构

除了优化注意力机制,DeepSeek-R1在模型结构上也有诸多创新:

  • 混合专家(MoE)架构:DeepSeek-R1采用了混合专家架构,将大模型分解为多个小的、专业的子模型(专家)。在特定任务中,仅激活相关的子模型,从而在消费级GPU上实现高效运行。这种架构不仅提高了计算效率,还通过动态路由策略优化了专家的选择和负载平衡。动态路由策略能够根据输入数据的特性,自动选择最合适的专家进行处理,从而在保证模型性能的同时,显著降低计算资源的消耗。(例如,在处理自然语言处理任务时,涉及情感分析的子模型会被激活,而处理文本分类的子模型则在对应任务时发挥作用。)
  • 多token预测(MTP)DeepSeek-R1采用多token预测策略,允许在单次解码步骤中预测多个token,而不是逐个预测。这种策略通过分层方法平衡性能提升与错误传播风险,显著提高了生成速度。具体来说,模型在预测时会将多个token的生成任务分解为多个层次,每个层次负责生成一部分token,从而在保证生成质量的同时,大幅提升生成效率。
  • 低精度计算:为了进一步提升计算效率,DeepSeek-R1采用了混合精度计算,使用8位浮点数代替标准的32位浮点数进行大部分计算,显著减少了内存消耗并加速了处理速度。混合精度计算通过将部分计算任务分配到低精度计算单元,从而在不显著影响模型精度的情况下,大幅提升计算效率。(在大规模数据训练过程中,这种方式可以在保证模型性能的前提下,大幅降低对硬件内存的需求,提升训练效率。)
3. 高效的信息传递

DeepSeek-R1对层间连接结构进行了优化,提高了信息传递的效率。具体而言,模型通过以下方式确保信息的有效传递:

  • 自适应层融合:DeepSeek-R1引入了自适应层融合技术,能够根据输入数据的特点动态调整不同层输出的权重,从而更好地适应不同类型的任务和数据。(当处理不同领域的文本时,模型可以自动调整各层的作用权重,使信息传递更加高效。)这种技术通过一个轻量级的神经网络来学习不同层输出的权重分配,使得模型能够根据输入数据的特性,自动调整各层输出的贡献,从而提升模型的泛化能力和任务适应性。
  • 键值记忆压缩通过多头潜在注意力机制实现键值索引的高效压缩,减少存储需求,进一步降低了显存消耗。具体来说,模型通过将键值对进行低维表示,从而在不显著影响模型性能的情况下,大幅减少存储需求。这种压缩技术尤其适用于处理大规模数据集,能够显著降低显存占用,提升模型的扩展性。

这些优化使DeepSeek-R1在处理复杂任务时,能够更高效地传递和处理信息,进而提升模型的整体性能。

(二)训练方式与技术突破

DeepSeek - R1采用了极具创新性的多阶段循环训练方式,其流程为:基础训练→强化学习(RL)微调→强化学习(RL)微调 。这种循序渐进、层层递进的训练模式,就像为模型搭建了一座不断攀升的成长阶梯,使其能够有条不紊地逐步优化自身性能,不仅极大地提升了深度思考能力,还显著增强了对各类复杂任务的适应性,在不同应用场景中都能展现出卓越的表现。

1. 基础训练阶段

在基础训练阶段,DeepSeek - R1就如同一块海绵,尽情地吸收海量文本数据中的知识养分。这些数据来源极为广泛,涵盖了互联网上的新闻资讯、学术论文、文学作品、社交媒体互动记录以及各类专业领域文档等,几乎囊括了人类自然语言表达的所有场景和领域。
此阶段主要运用无监督学习方法,以自回归语言建模任务作为核心训练手段,其中最典型的便是预测下一个单词

  • 例如,给定前文“我今天去了”,模型通过大量的训练学习,预测出可能的后续词汇如“超市”“公园”等。在这个过程中,模型逐渐领悟到语言的语法规则、词汇之间的搭配关系、语义的内在逻辑以及语言表达的习惯模式等,从而构建起初步的语言理解和生成能力。
  • 这一阶段的训练成果是后续一切优化和提升的基石,为模型在后续微调阶段能够更高效地学习和适应特定任务奠定了不可或缺的基础,恰似万丈高楼拔地而起时的稳固根基。
2. 强化学习(RL)微调阶段

当基础训练圆满完成,DeepSeek - R1便正式迈入强化学习(RL)微调阶段。
此阶段的核心精髓在于模型与所处环境的深度交互,并且依据环境反馈的奖励信号,不断灵活调整自身策略,以此大幅提升在特定任务中的性能表现。具体而言,强化学习微调涵盖以下几个紧密相连的关键步骤:

  • 环境设计精准且细致地定义任务的环境和目标是这一阶段的首要任务。以对话生成任务为例,所构建的环境可以是高度模拟真实场景的用户与模型的交互情境,其中用户输入的问题丰富多样,涵盖生活常识、工作事务、娱乐休闲等各个方面。而目标则明确设定为生成高质量、完全符合人类交流偏好和习惯的回答,不仅要内容准确、逻辑连贯,还要在语气和风格上贴近人类日常对话。

  • 奖励信号:精心设计科学合理的奖励函数是衡量模型输出质量的关键所在。奖励信号并非单一维度,而是基于多种综合性指标。回答的相关性要求模型的回应必须紧密围绕用户提问的核心,避免答非所问;准确性确保提供的信息真实可靠,不存在事实性错误;连贯性保证回答在语义和逻辑上自然流畅,各个语句之间过渡自然;此外,自然度指标要求生成的回答符合人类日常语言表达习惯,避免生硬、机械的表述。例如,当用户询问“秦始皇统一六国的时间是什么时候?”,若模型回答准确且语言自然流畅,就会获得较高的奖励分数;反之,若回答错误或表述晦涩难懂,则会得到较低的分数。

  • 策略调整:模型借助先进的强化学习算法(如近端策略优化算法PPO、深度Q网络算法DQN等),依据奖励信号对自身策略进行动态调整。以PPO算法为例,它通过优化策略网络,使模型在不断尝试与环境交互的过程中,逐渐摸索出在特定任务中表现更优的行为模式。每一次与环境的交互都是一次学习的机会,模型根据奖励信号不断改进自己的生成策略,从而在后续的任务处理中表现得更加出色。`

这种多阶段循环训练方式,让模型在反复的学习和优化过程中,持续突破自身局限,深度思考能力不断跃升,能够从容应对各种复杂多变的任务,任务适应性也得到了质的飞跃。

3. 基于人类反馈的强化学习(RLHF)

在强化学习的整个过程中,DeepSeek - R1尤为注重运用基于人类反馈的强化学习(RLHF)技术,这一技术成为了模型更加贴合人类需求和期望的关键密码。其核心机制在于将人类的专业评估和反馈深度融入模型训练,引导模型精准学习并遵循人类的价值观和偏好。具体实施步骤如下:

  • 人类评估在对话生成等典型任务场景中,邀请专业的人类评估者对模型生成的回答进行全面细致的评分。这些评估者具备丰富的语言知识和专业素养,评分标准涵盖多个关键维度。
  • 回答的相关性方面,评估者会判断模型回答是否直击问题要点,与问题紧密关联;
  • 准确性维度,会严格审查回答内容是否存在事实性错误,确保信息的真实性和可靠性;
  • 连贯性角度,评估回答在逻辑结构上是否严谨合理,语义是否连贯顺畅;
  • 自然度层面,考察回答是否符合人类日常交流的语言习惯,是否自然亲切。
    例如,对于一个关于旅游景点推荐的问题,评估者会从回答是否准确介绍景点特色、推荐理由是否合理、语言表述是否自然易懂等多个方面进行打分。
  • 反馈机制:`模型依据这些由人类评估者给出的评分结果,借助强化学习算法对自身的生成策略进行精准调整。通过不断学习哪些回答能够赢得高分,哪些需要改进,模型逐渐洞悉并掌握了符合人类期望的回答模式。
  • `例如,当模型发现详细且个性化的回答更容易获得高分时,它会在生成策略中更加注重对细节的描述和个性化元素的融入,从而在后续生成中更倾向于输出高质量的回答,不断向人类期望的方向靠拢。
  • 迭代优化通过多轮的评估和反馈,模型开启了持续迭代优化的进程。每一轮的优化都是在前一轮基础上的深度改进,使得模型在各种任务中的表现如同芝麻开花节节高。
  • 随着迭代次数的增加,模型对人类意图的理解愈发精准,回答的质量和实用性也不断提升,能够更好地满足人类在不同场景下的多样化需求。

这种基于人类反馈的强化学习方式,宛如为DeepSeek - R1赋予了读懂人类心思的能力,使其在处理各类任务时,能够紧密贴合人类的思维方式和表达习惯,极大地提升了交互体验和应用价值,成为了人类在信息处理和知识交互领域的得力助手。

(三)性能评测与优势凸显

为全面评估DeepSeek - R1的性能,研究人员采用多元评测指标与方法,覆盖数学推理、代码生成和自然语言推理等领域。这些评测既考察模型在特定任务的表现,也评估其在实际应用中的适用性与效率。

  1. 数学推理任务
  • 在数学推理任务中,研究人员选用AIME 2024、MATH - 500等评测数据集,考察模型的数学解题能力。这些数据集涵盖从基础到高级的数学问题,能全面评估模型的数学推理能力。评测显示,DeepSeek - R1解题准确率和速度表现出色。
  • 与OpenAI的o1等同类模型相比,它不仅能快速生成解题步骤,面对复杂问题也能保持高准确率。`
  • 比如在求解高等数学的复杂方程时,DeepSeek - R1能迅速分析并给出正确解答过程。
  1. 代码生成任务
  • 针对代码生成任务,研究人员通过HumanEval - Mul、LiveCodeBench等评测指标,评估模型生成代码的质量与准确性。
  • 这些指标既考察代码语法正确性,也评估其可读性和实际运行效果。结果显示,`DeepSeek - R1生成的代码质量更高,更能满足实际开发需求。
  • 在HumanEval - Mul评测中,它的代码通过率显著高于同类模型,在生成Python数据分析代码时,能准确实现功能,且代码结构清晰、注释合理。
  1. 自然语言推理任务
  • 在自然语言推理任务中,研究人员运用MMLU、GLUE等评测基准,测试模型对自然语言的理解和推理能力。
  • 这些基准涵盖从简单文本分类到复杂语义理解的任务,能全面评估模型语言处理能力。
  • 评测结果表明,DeepSeek - R1在复杂语义理解和推理上表现突出。在MMLU评测中,面对历史、科学等领域的复杂文本问题,它能准确理解并给出正确答案,成绩优于部分同类模型。

四、DeepSeek新手入门指南

(一)DeepSeek的获取与使用

  1. 获取途径:用户可以通过DeepSeek官方网站获取DeepSeek-R1。打开官方网站https://chat.deepseek.com/ ,用户可以选择手机号或者微信扫码进行注册登录。对于开发者而言,如果希望使用API接入DeepSeek-R1,可以访问DeepSeek开放平台https://platform.deepseek.com/ ,在平台上找到apikeys,生成一个api令牌,即可开始在各种应用中配置使用。
    在这里插入图片描述

  2. 使用指南:对于大多数用户来说,网页端是最方便快捷的使用方式。登录网页端后,用户可以在对话界面直接点击“深度思考”进入与DeepSeek-R1的交互页面。在输入框中输入问题或指令,然后点击“发送”按钮,DeepSeek-R1会根据输入生成相应的回复。使用API时,
    需要注意三个关键配置:apikey(即生成的令牌key)、base_url(可填写https://api.deepseek.com ,出于与OpenAI兼容考虑,也可设置为https://api.deepseek.com/v1 )以及模型(通过指定model='deepseek-reasoner’调用DeepSeek-R1)。

(二)有效提示词的使用技巧

提示词在与DeepSeek-R1交互中起着至关重要的作用,它能够引导模型生成符合用户期望的内容。在设计提示词时,应尽量使用清晰、明确的语言来描述需求。

如果希望DeepSeek-R1生成一篇关于人工智能发展趋势的文章,提示词可以这样设计:“请撰写一篇关于人工智能发展趋势的文章,涵盖技术创新、应用场景拓展以及对社会的影响等方面,字数在1000字左右。”这样的提示词明确了文章的主题、内容范围和字数要求,有助于模型生成更符合需求的文章。

针对不同任务类型,提示词的设计也有所不同。在文本生成任务中,可以适当增加一些风格要求,如“以幽默风趣的风格,写一篇介绍人工智能的短文”;在问题解答任务中,尽量避免模糊不清的表述,确保问题具有明确的指向性,如“请详细解释一下量子计算的基本原理”。

五、总结

本文全面介绍了DeepSeek的公司概况,包括其成立背景、发展历程以及在AI领域的定位和影响力。深入剖析了DeepSeek-R1模型的架构、训练方式和性能优势,同时为新手提供了获取和使用DeepSeek-R1的方法以及有效的使用技巧。

下一篇文章,我们将聚焦于 DeepSeek 的操作使用。会详细介绍DeepSeek 界面操作,以及如何与它进行交互,如输入指令的规范和技巧、处理文件的操作步骤等基本操作技巧。还会通过实际案例,让大家亲身体验使用 DeepSeek 完成简单任务的过程,帮助大家快速上手,迈出掌握 DeepSeek 的实践第一步。

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:我是寻道AI小兵,资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索。
📖 技术交流:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,加入技术交流群,开启编程探索之旅。
💘精心准备📚500本编程经典书籍、💎AI专业教程,以及高效AI工具。等你加入,与我们一同成长,共铸辉煌未来。
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值