本文记录在传统的语音识别中,训练GMM-HMMs声学模型过程中的公式推导过程。
Outline
- GMM - 混合高斯模型
- HMM – 隐马尔科夫模型
- Forward-Backward Algorithm – 前向后向算法
首先假设这里的训练数据,都做好了音素层面标记的(Label),即utterance的音素边界是已知的。这样做是为了更好地说明和对应我们的HMM建模单元(monophone)。后面会介绍Embedded Training,训练数据只需要语音+对应utterance的标记就行了。
1.GMM - 混合高斯模型
GMM表达式:
x 代表一帧语音对应的特征参数值, cjm , μjm , Σjm 分别为为第 j 个状态的第 m 个高斯的混合系数(mixing parameters),均值(mean),方差(variance), bj(x) 则为语音特征参数 x 属于状态 j 的概率。混合高斯模型,类似k均值聚类(k-means clustering)算法,属于一种迭代软聚类(soft clustering)算法。理论上,混合高斯模型能够表示特征空间上任何概率分布。混合高斯模型的参数可以通过EM算法训练得到,分Expectation-step、Maximization-step。
2.HMM – 隐马尔科夫模型
隐马尔科夫模型,是在马尔科夫链(Markov chain)的基础上,增加了观测事件(observed events);即把马尔科夫链原本可见的状态序列隐藏起来,通过一个可观测的显层来推断隐层的状态信息。其中,隐层映射到显层通过发射概率(emission probability)或观测概率(observation probability)来计算,隐层状态之间的转移通过转移概率(transition probability)获得。下图是一个HMM结构:
这也是在语音识别中常用的一种隐马尔科夫模型结构,也称为Bakis模型。一般我们对每一个音素建立一个HMM,其中包括三个emitting state,一个start state(non-emitting )和一个end state(non-emitting )。HMM的数学形式为:
所以,对于一个**给定结构的**HMM,我们需要通过训练获得它的A、B矩阵,即求解emission probability和transition probability。而在GMM-HMMs中,GMM作为HMM中的 bj(ot) ,即发射概率。下节则具体列出GMM-HMMs的推导公式。
3.Forward-Backward Algorithm – 前向后向算法
(一大波公式来袭!)
在GMM-HMMs的传统语音识别中,GMM决定了隐马尔科夫模型中状态与输入语音帧之间的符合情况,和HMM用来处理在时间轴上的声学可变性(自跳转)。训练HMM需要用到Forward-backward算法(Baum-Welch算法),本质上是一种EM算法。
图为部分的状态-时间篱笆网络,为方便理解下面前向、后向概率。
3.1前向概率(The Forward Probability)
前向概率
αt(j)
代表
t
时刻处于状态
i
,且之前的观测序列为
x1,⋯,xt
的概率,即
注: sI =initial state, sE =final state
3.2后向概率(The Backward Probability)
后向概率
βt(j)
是 已知
t
时刻处于状态
j
,输出之后的观测序列为
xt+1,⋯,xT
的概率,即
3.3EM algorithm for single-Gaussian /HMM
EM算法训练single Gaussian-HMMs,在E-step计算Q函数中固定的数据依赖参数 γt(j) (for GMM), ξt(i,j) (for HMM transition);在M-step更新GMM,HMM模型参数。这里可能有点misnomer,因为这里并没有很明显的体现出expectation maximization的过程,是因为前人已经帮你计算出来了。具体怎么确定依赖参数,和如何重估出模型参数,可参看上一篇博客《EM算法和Baum Welch算法》。本文直接给出过程结果。
首先给出在E-step需要计算的依赖参数,状态占用概率(The State Occupation Probability) γt(j) 是在给定观测序列 X 和模型参数 λ 下,在时刻 t 处于状态 j 的概率。
和 ξt(i,j) 是在给定观测序列 X 和模型参数 λ 下,在时刻 t 处于状态 j ,时刻 t+1 处于状态 j 的概率
然后,EM算法的整体过程为选定一个flat-start(训练数据的均值、方差作为GMM初始均值和方差)或者K-means,和将HMM的forward和self-loop初始概率设置为0.75、0.25。具体如下:
E-step:
For all time-state pairs
1. 递归计算前向、后向概率:
αt(j)
,
βt(j)
2. 计算the State Occupation Probability
γt(j,m)
和
ξt(i,j)
M-step:
基于 γt(j) 和 ξt(i,j) ,重估single-Gaussian/HMM的均值、方差和转移概率:
3.4EM algorithm for Gaussian Mixture Model/HMM
进一步拓展到语料库(a corpus of utterances ),GMM作为HMM观测PDF。
E-step:
for all time-state pairs
1. 递归计算前向、后向概率:
αrt(j)
,
βrt(j)
2. 计算the component-state occupation probabilities
γrt(j,m)
和
ξrt(i,j)
M-step:
基于
γrt(j,m)
和
ξrt(i,j)
,重估GMM/HMMs的均值、方差、混合系数和转移概率:
这样迭代至收敛,就得到GMM-HMMs所有参数了。当然,如果我们建模单元是Triphone(三音素),那么就需要进行一系列优化,以解决训练数据稀疏性问题。