2-GMM-HMMs语音识别系统-训练篇

本文记录在传统的语音识别中,训练GMM-HMMs声学模型过程中的公式推导过程。

Outline

  1. GMM - 混合高斯模型
  2. HMM – 隐马尔科夫模型
  3. Forward-Backward Algorithm – 前向后向算法

首先假设这里的训练数据,都做好了音素层面标记的(Label),即utterance的音素边界是已知的。这样做是为了更好地说明和对应我们的HMM建模单元(monophone)。后面会介绍Embedded Training,训练数据只需要语音+对应utterance的标记就行了。

1.GMM - 混合高斯模型

GMM表达式:

bj(x)=p(x)=m=1McjmN(x;μjm,Σjm)(1)

N(x;μjm,Σjm)=1(2π)D2|Σjm|12exp(12(xμjm)TΣ1jm(xμjm))(2)

x 代表一帧语音对应的特征参数值, cjm , μjm , Σjm 分别为为第 j 个状态的第 m 个高斯的混合系数(mixing parameters),均值(mean),方差(variance), bj(x) 则为语音特征参数 x 属于状态 j 的概率。混合高斯模型,类似k均值聚类(k-means clustering)算法,属于一种迭代软聚类(soft clustering)算法。理论上,混合高斯模型能够表示特征空间上任何概率分布。混合高斯模型的参数可以通过EM算法训练得到,分Expectation-step、Maximization-step。

2.HMM – 隐马尔科夫模型

隐马尔科夫模型,是在马尔科夫链(Markov chain)的基础上,增加了观测事件(observed events);即把马尔科夫链原本可见的状态序列隐藏起来,通过一个可观测的显层来推断隐层的状态信息。其中,隐层映射到显层通过发射概率(emission probability)或观测概率(observation probability)来计算,隐层状态之间的转移通过转移概率(transition probability)获得。下图是一个HMM结构:

这里写图片描述

这也是在语音识别中常用的一种隐马尔科夫模型结构,也称为Bakis模型。一般我们对每一个音素建立一个HMM,其中包括三个emitting state,一个start state(non-emitting )和一个end state(non-emitting )。HMM的数学形式为:

Q=q1q2qNA=a11a12an1annAO=o1o2oNB=bi(ot)q0,qT

所以,对于一个**给定结构的**HMM,我们需要通过训练获得它的A、B矩阵,即求解emission probability和transition probability。而在GMM-HMMs中,GMM作为HMM中的 bj(ot) ,即发射概率。下节则具体列出GMM-HMMs的推导公式。

3.Forward-Backward Algorithm – 前向后向算法

(一大波公式来袭!)

在GMM-HMMs的传统语音识别中,GMM决定了隐马尔科夫模型中状态与输入语音帧之间的符合情况,和HMM用来处理在时间轴上的声学可变性(自跳转)。训练HMM需要用到Forward-backward算法(Baum-Welch算法),本质上是一种EM算法。

这里写图片描述 
图为部分的状态-时间篱笆网络,为方便理解下面前向、后向概率。

3.1前向概率(The Forward Probability)

前向概率 αt(j) 代表 t 时刻处于状态 i ,且之前的观测序列为 x1,,xt 的概率,即 

αt(j)=p(x1,,xt,S(t)=j|λ)

1.α0(sI)=1;α0(j)=0,jsI2.αt(j)=[i=1Nαt1aij]bj(xt),1jN,1tT3.p(X|λ)=αT(sE)=i=1NαT(i)aiE

注: sI =initial state,  sE =final state

3.2后向概率(The Backward Probability)

后向概率 βt(j) 是 已知 t 时刻处于状态 j ,输出之后的观测序列为 xt+1,,xT 的概率,即 

βt(j)=p(xt+1,xT|S(t)=j,λ)

1.βT(i)=aiE2.βt(j)=j=1Naijbj(xt+1)βt+1(j),t=T1,,13.p(X|λ)=β0(I)=j=1NaIjbj(x1)β1(j)

3.3EM algorithm for single-Gaussian /HMM

EM算法训练single Gaussian-HMMs,在E-step计算Q函数中固定的数据依赖参数 γt(j) (for GMM), ξt(i,j) (for HMM transition);在M-step更新GMM,HMM模型参数。这里可能有点misnomer,因为这里并没有很明显的体现出expectation maximization的过程,是因为前人已经帮你计算出来了。具体怎么确定依赖参数,和如何重估出模型参数,可参看上一篇博客《EM算法和Baum Welch算法》。本文直接给出过程结果。

首先给出在E-step需要计算的依赖参数,状态占用概率(The State Occupation Probability γt(j) 是在给定观测序列 X 和模型参数 λ 下,在时刻 t 处于状态 j 的概率。

γt(j)=p(S(t)=j|X,λ)(S(t)=j|X,λ)=p(X,S(t)=j|λ)p(X|λ)=1αT(sE)αt(j)βt(j)

ξt(i,j) 是在给定观测序列 X 和模型参数 λ 下,在时刻 t 处于状态 j ,时刻 t+1 处于状态 j 的概率

ξ(i,j)=p(S(t)=1,S(t+1)=j|X,λ)=p(S(t)=1,S(t+1)=j,X|λ)p(X|λ)=αt(i)aijbj(xt+1)βt+1(j)αT(sE)

然后,EM算法的整体过程为选定一个flat-start(训练数据的均值、方差作为GMM初始均值和方差)或者K-means,和将HMM的forward和self-loop初始概率设置为0.75、0.25。具体如下: 
E-step:

For all time-state pairs 
1. 递归计算前向、后向概率: αt(j) , βt(j)  
2. 计算the State Occupation Probability  γt(j,m) ξt(i,j)

M-step:

基于 γt(j) ξt(i,j) ,重估single-Gaussian/HMM的均值、方差和转移概率:

μj^=Tt=1γt(j)xtTt=1γt(j)Σj^=T=1γt(j)(xtμj^)(xtμj^)TTt=1γt(j)aij^=Tt=1ξt(i,j)Nk=1Tt=1ξt(i,k)

3.4EM algorithm for Gaussian Mixture Model/HMM

进一步拓展到语料库(a corpus of utterances ),GMM作为HMM观测PDF。

E-step:

for all time-state pairs 
1. 递归计算前向、后向概率: αrt(j) , βrt(j)  
2. 计算the component-state occupation probabilities  γrt(j,m) ξrt(i,j)

γrt(j,m)=1αT(sE)i=1Nαrt(j)aijcjmbjm(xt)βrt(j)ξrt(i,j)=p(S(t)=1,S(t+1)=j|X,λ)=αrt(i)aijbj(xt+1)βrt+1(j)αT(sE)

M-step:

基于 γrt(j,m) ξrt(i,j) ,重估GMM/HMMs的均值、方差、混合系数和转移概率: 

μjm^=Rr=1Tt=1γrt(j,m)xrtRr=1Tt=1Mm=1γrt(j,m)Σjm^=Rr=1Tt=1γrt(j,m)(xrtμim^)(xrtμjm^)TRr=1Tt=1Mm=1γrt(j,m)cjm^=Rr=1Tt=1γrt(j,m)Rr=1Tt=1Mm=1γrt(j,m)aij^=Rr=1Tt=1ξrt(i,j)Rr=1Nk=1Tt=1ξrt(i,k)

这样迭代至收敛,就得到GMM-HMMs所有参数了。当然,如果我们建模单元是Triphone(三音素),那么就需要进行一系列优化,以解决训练数据稀疏性问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值