算法导论 堆排序

 堆的基本概念:

堆是一个完全二叉树,用数组来存储这个结构的时候,A[1...length[A]]可以表示有效值,但heap_size[A]以外的值都不是属于堆的,可以视为无效值。

 

对于数组中下标为i的元素,根据二叉树的性质可以得到:

其父节点下标为,P = n/2(下取整)

左孩子: L = 2*i

右孩子: R = 2*i + 1

 

最大堆:

除了根节点外的每个节点i,有:

A[parent[i]] >= A[i]

即树中的每个节点,父节点>= 孩子节点的值

 

最小堆:

同理,反之。

 

在讲堆排序之前,要先理解怎样维持最大堆的性质。对于节点i,假设以Left[i],Right[i]为根的两棵二叉树都是最大堆,但是这是A[i]可能比其孩子要小,这样就违背了最大堆的性质。此时如何调整,以保持呢?可以让A[i]下降到某个合适的高度,将A[i]与其左右孩子,A[L],A[R]的值想比较,并且将较大值与A[i]交换,这样A[i]就下降到了原来其孩子A[X]的高度,但这时的调整可能又破坏了原本是最大堆的左子树,或右子树,所以递归调整。

代码如下:

其中,len为实际元素个数,并使数组从下标1开始,在a[0]处填充无效数据0,i为待调整的元素下标

 

现在谈如何建造一个最大堆:

由于数组A中从下标n/2 + 1到n的元素都是叶子(其中n/2下取整),可以看作是只含一个元素的堆。

所以从Length[A]/2 downto 1的每一个节点都调用一次堆调整的函数max_heapify。

 

为什么要Length[A]/2 downto 1而不是1 upto Length[A]/2呢?

这是由于max_heapify中假设了左右子树已经是构造好的堆,所以要采用downto的形式!

 

代码如下:

 

现在考虑堆排序:

先将数组A[1..Length[A]]构造一个最大堆,则此时,数组中最大元素在下标1的位置,将它与下标n处值交换,则此时数组A中最后一个元素存储的是整个数组中最大值。这时原本构造好的堆的性质可能被破坏,所以将数组中A[1...n-1]调整堆,以保持其性质。这样以后,数组中第二大的元素又在下标1的位置,再将其与下标n-1处值交换,则数组中第二大元素在倒数第二个的位置...以此类推,直到调整到下标2,此时整个数组已经按升序排好序。

 

代码如下:

 

完整测试代码如下:

 

输入测试数据:4 1 3 2 16 9 10 14 8 7 1000

测试结果:

please enter nums with 1000 end
4 1 3 2 16 9 10 14 8 7 1000
0       4       1       3       2       16      9       10      14      8       7
heap_sort
0       1       2       3       4       7       8       9       10      14      16

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值