算法导论 习题 6.5-8

题:

请给出一个时间为O(nlgk)、用来将k个已排序链表合并为一个排序链表的算法。此处n为所有输入链表中元素的总数。

(提示:用一个最小堆来做k路合并)

 

k个已排序链表,假设每一个链表的第一个元素为root(i)  (i = 1,2,3...k)。

那么可以为这k个元素root(i)构造一个最小堆Heap_Min,其时间复杂度为O(lgk)。

此时堆顶元素假设为root(x),根据最小堆性质,root(x)是所有root(i)中的最小值。

而每个链表已经排序,所以其也是整个n个元素中的最小值,将其取出,放入另一个链表res中。

对于root(x)所在的链表,由于第一个元素已经被取出,所以用此链表中的第二个元素代替root(x),由于root(x)的值已经改变,整个最小堆Heap_Min需要调整,时间复杂度为O(lgk)。假如某个链表的值都被取空,那么就用Heap_Min的最后一个元素root(y)作为整个堆的新树根。依次,知道取出所以元素。

 

根据以上分析可知:每取出一个元素都要进行一次Heap_Min的堆调整,而调整的时间复杂度为O(lgk),一共要进行n次,总时间复杂度为O(nlgk)。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,这是两个问题。让我分别回答。 --- 对于习题24.2-4,我们需要证明:对于有向图$G=(V,E)$,从源点$s$到任何其他点$v\in V$的最短路径上最多可以包含$|V|-1$条边。 我们可以使用反证法来证明这个结论。假设存在一条从$s$到$v$的最短路径包含了$|V|$条边。由于这是一条简单路径,所以它经过了$|V|$个顶点中的所有顶点。因此,这个路径形成了一个简单环。我们可以从这个简单环中删除任意一条边,得到一条从$s$到$v$的路径,路径长度比原来的最短路径长度更小,这与原来的最短路径的假设相矛盾。因此,假设不成立,结论得证。 --- 对于习题24.3-6,我们需要证明:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。 我们可以使用反证法来证明这个结论。假设存在一个从$s$到$v$的最短路径上存在一个负权重环。由于负权重环的存在,我们可以通过不断绕这个环走来无限制地减小路径长度,因此不存在从$s$到$v$的最短路径。但是,Bellman-Ford算法会在第$|V|$次松弛操作之前终止,并且在第$i$次松弛操作之后,算法会计算出从$s$到所有距离$s$不超过$i$的顶点的最短路径。因此,我们可以得出结论:如果负权重有向图$G$中不存在从源点$s$可达的负权重环,则Bellman-Ford算法能够正确地计算出从$s$到所有其他顶点的最短路径。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值