【无标题】

标题理解PyTorch中的torch.gather函数

按自己理解记录自己对gather函数的认识,以便回顾
图来源于知乎评论:https://zhuanlan.zhihu.com/p/352877584
图来源于知乎评论:https://zhuanlan.zhihu.com/p/352877584

1.实例

import torch

tensor_0 = torch.arange(3, 12).view(3, 3)
print(tensor_0)

#输出
tensor([[ 3,  4,  5],
        [ 6,  7,  8],
        [ 9, 10, 11]])

2. index为一维向量

2.1 输入行向量index,并替换行索引(dim=0)

index = torch.tensor([[2, 1, 0]])
tensor_1 = tensor_0.gather(0, index)
print(tensor_1)

#输出
tensor([[9, 7, 5]])

dim=0,则确定列数值,第一列为0,第二列为1,以此类推
在这里插入图片描述
再将index填入,因为只有一行,故只填第一行,结果为
在这里插入图片描述

2.2 输入列向量index,并替换列索引(dim=1)

index = torch.tensor([[2, 1, 0]]).t()
tensor_1 = tensor_0.gather(1, index)
print(tensor_1)

#输出
tensor([[5],
        [7],
        [9]])

dim=1,则确定行数值,第一行为0,第二行为1,以此类推
在这里插入图片描述
再将index填入,因为只有一列,故只填第一列,结果为
在这里插入图片描述
准确来说应该是:
(0,2
(1,1
(2,0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值