基于深度强化学习的网约车动态路径规划 阅读笔记

Dynamic Ride-Hailing Route Planning Based on Deep Reinforcement Learning

本文的主要贡献

  1. 提出了一个基于实时供需状态的动态网约车路径规 划 框 架,实 现 高 效 的 大 规 模 空 闲 网 约 车调度,通过包含实时的供需信息来适应动态变化的环境.
  2. 设计了一种带有动作采样的 ASGAC算法来选择可行的动作,增加了动作选择的随机性,从而有效地防止竞争

网约车路径规划问题

网约车、乘客在调度中心下的交互框架

车队管理模块:跟踪网约车的实时位置,以获取下一个时间片网约车供应量
请求预测模块:根据历史的请求时空分布,预测未来的网约车需求分布
深度强化学习调度策略:将供需结合起来,以确定空闲网约车的调度动作,然
后网约车将会朝着调度终点巡航

当网约车被分配给一个请求后,它会首先沿着最短路径前往请求的起点去接乘客,然后驶向请求的终点以完成服务.如果一个请求在其最长等待时间内都没
有被分配给网约车,则该请求将被拒绝.
在这里插入图片描述

Markov决策过程

状态:元组中的元素分别表示网格下标、当前时间片的索引、全局的空闲车辆与等待中的请求数量之差,以及该网格的网约车供应量和乘客需求
在这里插入图片描述
动作:是指将空闲网约车派往某个特定的目的网格gj
奖励:在这里插入图片描述
回合.在该问题设定中,一个回合是从8∶00到22∶00的繁忙时段.因此,时间t在22∶00之后的状态为终止状态

深度强化学习(Deep Reinforcement Learning, DRL)在网约车调度中的整数规划算法代码实现通常是复杂且高度定制化的,因为它涉及到多个库和技术的集成。以下是一个简化示例,展示了一个基本的Python代码框架: ```python import gym from stable_baselines3 import PPO from ortools.linear_solver import pywraplp # 创建一个模拟环境,假设gym-ridesharing或其他自定义环境 env = CustomRideSharingEnv() # 定义一个整数规划模型 def integer_programming_model(driver_positions, passenger_requests): solver = pywraplp.Solver.CreateSolver('SCIP') # ...编写模型的约束和目标函数... return solver # 使用DRL库(例如Stable Baselines3)训练模型 model = PPO('MlpPolicy', env, verbose=1) model.learn(total_timesteps=NUM_TRAIN_STEPS) # 在部署阶段,整合DQN策略与整数规划 def schedule_rides(driver_positions, passenger_requests): state = env.reset() # 获取初始状态 done = False while not done: action, _states = model.predict(state) # 根据DQN选出动作 # 解决整数规划问题并应用最佳动作 solver_solution = integer_programming_model(..., ...) next_state, reward, done, info = env.step(solver_solution) state = next_state return ... ``请注意,这只是一个非常简化的例子,实际代码会更复杂,需要处理状态转换、观察空间转换、以及与外部API的交互。此外,由于版权原因,完整的开源代码往往在论文、GitHub项目或特定平台(如Google Colab)上能找到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值