迁移学习
xiaocong1990
这个作者很懒,什么都没留下…
展开
-
什么是迁移学习
迁移学习的目标是从一个或者多个源领域任务中提取有用知识并将其用在新的目标任务上,本质上就是知识的迁移再利用。迁移学习的问题关键就是要解决三个问题,什么时候迁移,什么可以迁移,如何迁移。迁移学习的本质就是知识的再利用,数学上,迁移学习包含“域”和“任务”两个因素。按照迁移学习的定义,可以将迁移学习分为三种类型,分布差异迁移学习,特征差异迁移学习和标签差异迁移学习。原创 2017-05-12 20:01:47 · 2968 阅读 · 0 评论 -
tradaboost算法原理
定义迁移学习的模型如下:设为源样例空间,为辅助样例空间,源样例空间也就是我们的目标空间,就是想要去分类的样例空间。设Y={0,1}为类空间,这里简化了多分类问题为二分类问题讨论,这样我们的训练数据也就是测试数据: 其中测试数据是未标注的,我么可以将训练数据划分为两个数据集:原创 2017-05-14 19:03:44 · 5966 阅读 · 0 评论