WoguValidator1.1

WoguValidator是一款轻量级的表单验证工具,不依赖任何框架,适用于所有java应用环境(java app,java web etc.)。支持以声明的形式(用标注实现)配置表单,内置Required,Max,Min,MaxLength,MinLength,Zh(中文),Email,Equal(典型的用于密码与确认密码),Mobile,RegExp(自定义正则)标注。


使用范例

import com.wogu.form.Form;
import com.wogu.form.annotation.*;

public class MyForm extends Form {
	
	@Required
	@Email
	public String email;
	
	@Required
	@Max(100)
	@Min(18)
	public String age;
	
	@Required
	@MaxLength(200)
	@MinLength(20)
	public String description;
	
	@Required
	@RegExp("^[a-z0-9_]{6,20}$")
	public String password;
	
	@Required
	@Equal("password")
	public String comfirmPassword;
	
	@RegExp("^\\d+$")
	public String[] ids;
	
	@Mobile
	public String mobile;
	
	@Zh
	public String chineseName;
}

java web环境

public class FormTest extends HttpServlet {
	
	public void doPost(HttpServletRequest request, HttpServletResponse response)
			throws IOException, ServletException {
		MyForm form = new MyForm();
		Map<String, String[]> data = request.getParameterMap();
		form.init(data);
		if(form.validate()) {
			//验证成功
		} else {
			//验证失败
		}
	}
}

java app

public class FormTest {
	
	public static void main(String[] args) {
		MyForm form = new MyForm();
		HashMap<String, String[]> data = new HashMap<>();
		data.put("email", new String[]{"zhangwenbo@163.com"});
		data.put("age", new String[]{"30"});
		data.put("description", new String[]{"WoguValidator is a lightweight form validator"});
		data.put("password", new String[]{"123456"});
		data.put("comfirmPassword", new String[]{"123456"});
		data.put("ids", new String[]{"1", "2", "3"});
		data.put("mobile", new String[]{"13868433923"});
		data.put("chineseName", new String[]{"你好"});
		
		form.init(data);
		if(form.validate()) {
			System.out.println("success");
		} else {
			System.out.println("failed");
		}
	}
}

QQ:88433062

androidQQ群:33455842

项目地址:https://code.google.com/p/wogu-validator/

裂缝目标检测数据集 一、基础信息 数据集名称:裂缝目标检测数据集 图片数量: 训练集:462张图片 验证集:21张图片 测试集:9张图片 总计:492张图片 分类类别: crack(裂缝):指物体表面的裂缝,常见于建筑、基础设施等场景,用于损伤检测和风险评估。 标注格式: YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据格式:图片来源于实际场景,格式兼容常见深度学习框架。 二、适用场景 建筑与基础设施检查: 数据集支持目标检测任务,帮助构建能够自动识别裂缝区域的AI模型,用于建筑物、道路、桥梁等结构的定期健康监测和维护。 工业检测与自动化: 集成至智能检测系统,实时识别裂缝缺陷,提升生产安全和效率,适用于制造业、能源等领域。 风险评估与保险应用: 支持保险和工程行业,对裂缝进行自动评估,辅助损伤分析和风险决策。 学术研究与技术开发: 适用于计算机视觉与工程领域的交叉研究,推动目标检测算法在现实场景中的创新应用。 三、数据集优势 精准标注与任务适配: 标注基于YOLO格式,确保边界框定位准确,可直接用于主流深度学习框架(如YOLO、PyTorch等),简化模型训练流程。 数据针对性强: 专注于裂缝检测类别,数据来源于多样场景,覆盖常见裂缝类型,提升模型在实际应用中的鲁棒性。 实用价值突出: 支持快速部署于建筑监测、工业自动化等场景,帮助用户高效实现裂缝识别与预警,降低维护成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值