红黑树

红黑树

  1. 大名鼎鼎的红黑树
    红黑树(Red Black Tree) 是一种自平衡二叉查找树,是在计算机科学中用到的一种数据结构,典型的用途是实现关联数组。红黑树和AVL树类似,都是在进行插入和删除操作时通过特定操作保持二叉查找树的平衡,从而获得较高的查找性能。
    它虽然是复杂的,但它的最坏情况运行时间也是非常良好的,并且在实践中是高效的: 它可以在O(log n)时间内做查找,插入和删除,这里的n 是树中元素的数目。
  2. 红黑树的五条基本性质
    性质1. 节点是红色或黑色。
    性质2. 根节点是黑色。
    性质3 每个叶节点(NIL节点,空节点)是黑色的。
    性质4 每个红色节点的两个子节点都是黑色。(从每个叶子到根的所有路径上不能有两个连续的红色节点)
    性质5. 从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。
    另一条性质是对于红黑树,任何不平衡都会在三次旋转内解决(优化过后的红黑树可以实现)
  3. 具体代码实现
package AVLTree;

import SetBasicsAndBSTSet.FileOperation;

import java.util.ArrayList;

/**
 * @ Description:AVL树的实现
 * @ Date: Created in 15:27 23/07/2018
 * @ Author: Anthony_Duan
 */
public class AVLTree<K extends Comparable<K>, V> {

    private class Node {
        public K key;
        public V value;
        public Node left, right;
        public int height;

        public Node(K key, V value) {
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree() {
        root = null;
        size = 0;
    }

    public int getSize() {
        return size;
    }

    public boolean isEmpty() {
        return size == 0;
    }

    // 判断该二叉树是否是一棵二分搜索树
    public boolean isBST() {

        ArrayList<K> keys = new ArrayList<>();
        inOrder(root, keys);
        for (int i = 1; i < keys.size(); i++) {
            if (keys.get(i - 1).compareTo(keys.get(i)) > 0) {
                return false;
            }
        }
        return true;
    }

    //中序遍历
    private void inOrder(Node node, ArrayList<K> keys) {

        if (node == null) {
            return;
        }

        inOrder(node.left, keys);
        keys.add(node.key);
        inOrder(node.right, keys);
    }

    // 判断该二叉树是否是一棵平衡二叉树
    public boolean isBalanced() {
        return isBalanced(root);
    }

    // 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
    private boolean isBalanced(Node node) {

        if (node == null) {
            return true;
        }

        int balanceFactor = getBalanceFactor(node);
        if (Math.abs(balanceFactor) > 1) {
            return false;
        }
        return isBalanced(node.left) && isBalanced(node.right);
    }

    // 获得节点node的高度
    private int getHeight(Node node) {
        if (node == null) {
            return 0;
        }
        return node.height;
    }

    // 获得节点node的平衡因子
    private int getBalanceFactor(Node node) {
        if (node == null) {
            return 0;
        }
        return getHeight(node.left) - getHeight(node.right);
    }

    // 对节点y进行向右旋转操作,返回旋转后新的根节点x
    //        y                              x
    //       / \                           /   \
    //      x   T4     向右旋转 (y)        z     y
    //     / \       - - - - - - - ->    / \   / \
    //    z   T3                       T1  T2 T3 T4
    //   / \
    // T1   T2
    private Node rightRotate(Node y) {
        Node x = y.left;
        Node T3 = x.right;

        // 向右旋转过程
        x.right = y;
        y.left = T3;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 对节点y进行向左旋转操作,返回旋转后新的根节点x
    //    y                             x
    //  /  \                          /   \
    // T1   x      向左旋转 (y)       y     z
    //     / \   - - - - - - - ->   / \   / \
    //   T2  z                     T1 T2 T3 T4
    //      / \
    //     T3 T4
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T2 = x.left;

        // 向左旋转过程
        x.left = y;
        y.right = T2;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 向二分搜索树中添加新的元素(key, value)
    public void add(K key, V value) {
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value) {

        if (node == null) {
            size++;
            return new Node(key, value);
        }

        if (key.compareTo(node.key) < 0) {
            node.left = add(node.left, key, value);
        } else if (key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
        {
            node.value = value;
        }

        // 更新height
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
            return rightRotate(node);
        }

        // RR
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
            return leftRotate(node);
        }

        // LR
        if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key) {

        if (node == null) {
            return null;
        }

        if (key.equals(node.key)) {
            return node;
        } else if (key.compareTo(node.key) < 0) {
            return getNode(node.left, key);
        } else // if(key.compareTo(node.key) > 0)
        {
            return getNode(node.right, key);
        }
    }

    public boolean contains(K key) {
        return getNode(root, key) != null;
    }

    public V get(K key) {

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue) {
        Node node = getNode(root, key);
        if (node == null) {
            throw new IllegalArgumentException(key + " doesn't exist!");
        }

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node) {
        if (node.left == null) {
            return node;
        }
        return minimum(node.left);
    }

    // 从二分搜索树中删除键为key的节点
    public V remove(K key) {

        Node node = getNode(root, key);
        if (node != null) {
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key) {

        if (node == null) {
            return null;
        }

        Node retNode;
        if (key.compareTo(node.key) < 0) {
            node.left = remove(node.left, key);
            // return node;
            retNode = node;
        } else if (key.compareTo(node.key) > 0) {
            node.right = remove(node.right, key);
            // return node;
            retNode = node;
        } else {   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if (node.left == null) {
                Node rightNode = node.right;
                node.right = null;
                size--;
                // return rightNode;
                retNode = rightNode;
            }

            // 待删除节点右子树为空的情况
            else if (node.right == null) {
                Node leftNode = node.left;
                node.left = null;
                size--;
                // return leftNode;
                retNode = leftNode;
            }

            // 待删除节点左右子树均不为空的情况
            else {
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                //successor.right = removeMin(node.right);
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;

                node.left = node.right = null;

                // return successor;
                retNode = successor;
            }
        }

        if (retNode == null) {
            return null;
        }

        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
            return rightRotate(retNode);
        }

        // RR
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
            return leftRotate(retNode);
        }

        // LR
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }

        return retNode;
    }

    public static void main(String[] args) {

        System.out.println("Pride and Prejudice");

        ArrayList<String> words = new ArrayList<>();
        if (FileOperation.readFile("/Users/duanjiaxing/IdeaProjects/Data-Structure/data-structure/src/AVLTree/pride-and-prejudice.txt", words)) {
            System.out.println("Total words: " + words.size());

            AVLTree<String, Integer> map = new AVLTree<String, Integer>();
            for (String word : words) {
                if (map.contains(word)) {
                    map.set(word, map.get(word) + 1);
                } else {
                    map.add(word, 1);
                }
            }

            System.out.println("Total different words: " + map.getSize());
            System.out.println("Frequency of PRIDE: " + map.get("pride"));
            System.out.println("Frequency of PREJUDICE: " + map.get("prejudice"));

            System.out.println("is BST : " + map.isBST());
            System.out.println("is Balanced : " + map.isBalanced());

            for (String word : words) {
                map.remove(word);
                if (!map.isBST() || !map.isBalanced()) {
                    throw new RuntimeException();
                }
            }
        }

        System.out.println();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值