细粒度目标识别
文章平均质量分 50
小菜鸡拉
这个作者很懒,什么都没留下…
展开
-
Look Closer to See Better Recurrent Attention Convolutional Neural Network for Fine-grained Image Re
2. Related Work 关于细粒度图像识别的研究沿着两个维度进行,即判别性特征学习和复杂的局部定位。 2.1. Discriminative Feature Learning 学习判别性特征对于细粒度图像识别至关重要。由于深度学习的成功,大多数方法依赖于强大的卷积深层特征, 其在通用和细粒度识别上比手工制作的特征有着显着改善[4,5,6,17,29]。为了学习更强大的特征表示,原创 2017-08-16 16:34:32 · 3539 阅读 · 0 评论 -
Picking Deep Filter Responses for Fine-Grained Image Recognition
作为一个新兴的研究课题,细粒度识别旨在区分属于同一基本类别的数百个子类别。它位于基本类别分类(例如,在Pascal VOC [8]中分类自行车,船,汽车等等)和个体实例的识别(例如人脸识别)之间。没有经验的人可以立即识别自行车或马匹等基本类别,因为它们在视觉上非常不相似,而在没有具体专家指导的情况下,他/她很难从黑鸟中区分乌鸦。事实上,细粒度的子类通常共享相同的部分(例如,所有的鸟应该具有翅膀,腿原创 2017-08-16 17:19:05 · 770 阅读 · 0 评论