关于文章 A Llook At Gaussian Mixture Reduction Algorithems

本文探讨了混合高斯模型的约简算法,包括GMRC、COWA和蛮力方法及其改进,旨在降低计算量和复杂度。算法涉及贪婪初始化、聚类、迭代优化等技术,适用于背景建模、运动目标提取等场景。
摘要由CSDN通过智能技术生成

第一次写技术文档,要求别太高了,尤其是对于我这样一个小硕,还是一个不怎么懂数学的女生小硕,哈哈偷笑

首先,必须说,这篇文章信息量很大,而且有很多数学公式,提到的算法也很多,科研真是不容易啊。。。。

这篇文章是关于混合高斯模型的约简算法,我是因为需要提取运动目标用到了高斯混合模型而接触到这篇文章,对我来说要理解难度很大,很多东西都不懂,很难看进去啊。

话说,科研还真是奇妙,一方面,因为混合高斯模型因为效果还不理想,所以很多人想到了和其他算法的结合使用,简单的有帧间差分法和canny边缘算子,复杂的甚至有和神经网络的结合,这样,算法的复杂度和计算量就在增加;另一方面,却有很多人在想尽办法降低复杂度,就像这篇文章,约简算法,就是为了降低复杂度和计算量。不过呢,两个方面都是为了更好地应用混合高斯模型,这就是精度和速度之间的拉锯战吧。

简单来说,高斯混合模型用于背景建模时可以看做一种聚类算法(其它应用时不了解),也就是根据混合高斯模型来将像素点分为背景和前景两类。

这个高斯混合模型约简算法主要提到了三种约简算法:GMRC(通过聚类的高斯混合约简算法)、COWA(约束优化权重适应)和brute-force approach(蛮力方法或者硬方法),蛮力方法是作为最后仿真实验的一个比较的基准,以及他们的一些改进方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值