接口性能优化宝典:解决性能瓶颈的策略与实践

目录

一、直面索引

(一)索引优化的常见场景

(二)如何检查索引的使用情况

(三)如何避免索引失效

(四)强制选择索引

二、提升 SQL 执行效率

(一)避免不必要的全表扫描

1.避免使用 SELECT *

2.用 UNION ALL 替代 UNION

3.小表驱动大表

(二)控制数据量,减少计算量

1.批量操作

2.多用 LIMIT

3.IN 中值太多

(三)查询重构

1.增量查询

2.高效的分页

3.用连接查询代替子查询

(四)减少复杂性

1.JOIN 的表不宜过多

2.JOIN 时要注意

三、直击远程调用

(一)远程调用直接案例分析

(二)性能提升方案说明

1.并发调用

2.数据异构

3.混合策略

四、规避重复调用和递归等操作

(一)循环查数据库优化

(二)死循环优化

(三)无限递归优化

(四)总结分析

五、异步处理优化

(一)明确异步处理方式

(二)多线程线程池(Thread Pool)

(三)消息队列(MQ)

六、避免大事务:优化事务性能

(一)大事务的问题

(二)优化大事务的策略

1.将查询(select)方法放到事务外

2.避免将远程调用放入事务中

3.避免一次性处理大量数据

4.非核心功能可以非事务执行

5.异步处理

(三)关键总结

七、锁粒度与性能优化:内部锁与分布式锁

(一)内部锁:锁粒度优化

(二)分布式锁:跨节点锁粒度优化

(三)总结

八、分页处理与优化:同步调用与异步调用

(一)同步调用:分页查询

同步分页调用示例

关键点分析

(二)异步调用:提高并发度

异步分页调用示例

关键点分析

异步调用的注意事项

(三)抉择说明

九、缓存优化方案:提升接口性能

(一)缓存的使用场景

(二)使用 Redis 缓存

(三)使用二级缓存

1.二级缓存的工作原理

2.使用 Caffeine 实现本地缓存

步骤 1:引入依赖

步骤 2:配置 Caffeine 缓存

步骤 3:使用 @Cacheable 注解进行缓存

3. 数据一致性问题

十、分库分表:解决数据库性能瓶颈

(一)为什么要进行分库分表?

(二)分库分表的方式

1.垂直拆分(Vertical Sharding)

2.水平拆分(Horizontal Sharding)

常见的水平拆分策略:

(三)分库分表的应用场景

(四)如何设计分库分表

(五)分库分表的选择依据

十一、总结


干货分享,感谢您的阅读!

在现代互联网应用中,随着数据量的激增和用户需求的日益增长,接口性能的优化已成为开发人员和架构师的重点课题。如何保证系统在高并发、高负载的情况下仍能高效稳定地运行,是我们面临的巨大挑战。本文将深入探讨接口性能优化的各个方面,从数据库索引优化、SQL执行效率提升到分布式锁和缓存策略等多个层面,结合常见的实践和优化策略,帮助读者理解并应对性能瓶颈。通过直击数据库操作、远程调用、事务处理等核心问题,提供实用的优化方案,帮助系统在复杂环境中实现高效运作。无论是单体应用还是分布式系统,本文提供的优化策略都能有效提高系统的响应速度和稳定性,为架构师和开发者提供一份实用的性能优化指南。

一、直面索引

索引优化是数据库性能调优中至关重要的一部分,特别是当查询的表数据量较大时,正确的索引能够极大提升查询效率。

最全面的可直接见:

评论 1469
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张彦峰ZYF

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值