目录
干货分享,感谢您的阅读!
在当今快速发展的技术环境中,软件架构不仅是系统设计的基础,更是企业成功的关键。然而,随着业务需求的不断演变和技术的飞速进步,架构的复杂性也随之加剧。如何有效管理这一复杂性,成为了软件工程师和架构师面临的一项重要挑战。
本篇文章将深入探讨软件架构中的复杂性,从业务层面的多变性到技术实现的挑战,提供全面的分析和洞察。我们将审视如何在设计过程中平衡业务目标与技术需求,确保架构的灵活性与可扩展性。通过借鉴成功案例和最佳实践,我们旨在为读者提供切实可行的策略,帮助他们在面对日益复杂的架构时,做出明智的决策。
让我们一起踏上这段探索之旅,揭示软件架构复杂性的真相,并为未来的架构设计奠定坚实的基础。
一、综述分析
软件架构的复杂度分析通常涵盖了业务复杂度和技术复杂度两个方面。这两个方面相互影响,共同决定了最终的软件系统的复杂性。
业务复杂度:
-
业务流程复杂性: 软件系统的业务流程可能涉及多个步骤、参与者和条件。复杂的业务流程可能需要更多的逻辑和交互,从而增加了系统的复杂性。
-
领域知识复杂性: 如果软件系统涉及复杂的领域知识、业务规则和工作流程,开发团队需要深入理解这些领域概念,这可能会增加开发和交流的难度。
-
数据模型复杂性: 如果业务需要处理大量的数据、不同类型的数据关系以及复杂的查询需求,数据模型的设计和管理可能会变得更加复杂。
-
业务变更频率: 如果业务需求经常变化,软件系统需要具备适应性和灵活性,这可能导致系统设计上的复杂性。
技术复杂度:
-
架构设计复杂性: 选择适当的架构模式、组件分布和通信方式,以满足业务需求可能是一项复杂的任务。
-
分布式系统复杂性: 将软件系统分解为多个服务、微服务或模块,需要考虑通信、数据一致性、负载均衡等分布式系统问题。
-
技术栈选择: 不同的技术栈有不同的优势和限制。选择合适的技术栈可能需要考虑性能、可伸缩性、安全性等多个因素。
-
集成和交互复杂性: 如果系统需要与其他系统集成,协议、数据格式等的统一可能会带来额外的复杂性。
-
性能和可伸缩性: 高性能和可伸缩的需求可能需要考虑缓存、负载均衡、数据库优化等问题,增加了系统的复杂性。
-
安全性和隐私: 系统的安全需求可能会导致加密、认证、授权等的引入,这会增加系统的技术复杂性。
-
错误处理和容错: 处理错误、故障和容错机制需要额外的代码和设计,增加了系统的复杂性。
综合来看,业务复杂性和技术复杂性的相互作用会决定最终的软件系统复杂性。在设计和开发过程中,需要权衡各种需求、挑战和限制,以寻找最合适的平衡点,以确保系统能够满足业务需求并具备良好的可维护性和可扩展性。
二、业务复杂性分析
(一)领域建模
微服务架构的兴起引发了对单体架构弊端的反思,因此,在服务的领域建模和拆分过程中,采用了Eric Evans在2003年提出的领域驱动设计(DDD)原则作为指导原则。
DDD强调了一系列重要概念,以协助在微服务架构中进行领域建模和服务设计:
-
通用语言(Ubiquitous Language): 强调在整个团队中创建一致的业务语言,以确保开发人员和业务专家之间的沟通准确无误。
-
模型驱动设计(Model-Driven Design): 倡导将业务逻辑转化为实际的代码模型,这有助于直接映射业务需求和代码实现。
-
上下文映射(Context Map): 定义了不同界限上下文之间的关系,以协调不同微服务之间的交互。
-
界限上下文(Bounded Context): 将系统划分为一系列明确的业务上下文,每个上下文具有其自己的模型和语言,有助于隔离复杂性。
-
重复概念(Duplicate Concept)和假同源(False Cognate)的识别: 着重在不同上下文中识别并消除相似但不同含义的概念,以确保一致性。
-
消化知识(Crunching Knowledge): 意味着在整个团队中共同理解业务,并将这些知识转化为一致的模型和代码。
通过使用聚合根、实体、值对象、领域服务、应用服务和资源库等编程概念,可以在代码层面上实现领域模型的设计和实现,以反映业务需求。这种方法有助于搭建一个适应微服务架构的清晰、一致且可维护的领域模型。整个过程类似于构建一座巴别塔,通过将知识分解为更小的部分来降低认知负荷,同时保持了一致性。
在领域驱动设计(DDD)中,还有一些重要的模式和原则,用于识别、沟通和选择模型边界以及不同子系统之间的关系,以确保领域模型的完整性和组织间的协作效率。
以下是这些模式和原则的解释,以更清晰的方式表达:
-
共享内核(Shared Kernel): 当两个团队决定共享核心领域或通用子领域时,它们可以通过共享内核来减少重复,使得两个子系统之间的集成更加容易。共享内核可以用于解决生产者和消费者之间的事件共享等情况。
-
客户方-提供方(Customer-Supplier): 在客户方-提供方模式中,客户方服务单向依赖提供方服务。客户方决定提供方的开发自由度,但双方都有各自的领域模型边界和上下文,可以独立发展。
-
跟随者(Conformist): 跟随者模式中,客户方服务单向依赖提供方服务,而提供方倾向于利他主义,向客户方共享信息。作为跟随者,客户方通过严格遵从提供方模型,消除界限上下文之间转换的复杂性。
-
防腐层(Anticorruption Layer): 防腐层模式中,客户方服务单向依赖提供方服务。由于提供方独立演化领域模型,客户方为了减少因提供方模型变化而带来的转换成本,通过使用 Facade 或 Adapter 模式建立防腐层,从而隔离转换逻辑。
-
各行其道(Separate Ways): 在各行其道模式中,双方不考虑集成,各自独立开发,适用于不需要紧密协作的情况。
-
开放主机服务(Open Host Service): 当一个子系统具有内聚性,并满足其他子系统的公共需求时,可以将其封装为服务,通过开放协议供所有需要与之集成的子系统使用。
这些模式和原则帮助团队在微服务架构中进行领域建模和服务设计时做出明智的决策,以确保不同服务之间的协作效率和领域模型的一致性。
(二)领域分层
分层架构的目标是将领域模型隔离开来,以分层的方式分离关注点,并确保本层业务复杂性的变化不会对下层产生负面影响。
在领域驱动设计中,Eric Evans提出了一个四层模型,将不同的组件分别划分到接口层、应用层、领域层和基础设施层。这种划分有助于实现清晰的架构和职责分离。
另外,Vaughn Vernon在《实现领域驱动设计》中提出了端口和适配器架构,也称为六边形架构(Hexagonal Architecture),它已经成为微服务分层架构的事实标准。
这种架构的设计思想是将系统划分为内部核心(领域)和外部适配器(接口),以及通过接口(端口)进行交互。核心包含了领域模型和业务逻辑,而适配器负责与外部系统交互和通信。这种分层和分离的结构有助于实现更好的可维护性、可测试性和灵活性。
总之,分层架构和六边形架构是为了实现系统的解耦、模块化和易于管理,特别适用于领域驱动设计和微服务架构。这些原则和架构有助于管理复杂性,确保系统能够在不同层次上进行适当的变化而不影响其他层次。
接着,Jeffrey Palermo提出了洋葱架构。在端口和适配器架构的基础上贯彻了将领域放在应用中心,将传达机制(UI)和系统使用的基础设施(ORM、搜索引擎、第三方 API...)放在外围的思路,在其中加入了内部层次:代表传达机制和基础设施的外层、 代表业务逻辑的内层。端口和适配器架构与洋葱架构有着相同的思路,它们都通过编写适配器代码将应用核心从对基础设施的关注中解放出来,避免基础设施代码渗透到应用核心之中。这样应用使用的工具和传达机制都可以轻松地替换,可以一定程度地避免技术、工具或者供应商锁定。
然后,Bob大叔(Robert C. Martin)对各种分层架构总结为整洁架构(Clean Architecture)。Herberto Graça进一步总结为清晰架构(Explicit Architecture)。
(三)服务粒度
微服务架构相对于单体架构,能够更有效地将业务复杂性分解到各个微服务中。因此,服务的拆分粒度成为一个关键话题。Neal Ford在他的书《Software Architecture: The Hard Parts》中提出了两个度量指标来客观地衡量服务的大小:
-
语句数量: 这是用于衡量服务大小的一项指标,它能够客观地显示服务所包含的逻辑。更少的语句数量通常意味着更清晰、更专注的服务。
-
公共接口数量: 这是度量和跟踪服务公开的公共接口或操作的数量。更少的公共接口通常表示服务更专注于特定的功能领域。
尽管这些指标仍然存在一些主观性和可变性,但它们是迄今为止较接近客观地衡量和评估服务粒度的方法。
此外,以下是6条衡量服务拆分的标准:
-
服务范围及功能: 评估