- 博客(1218)
- 收藏
- 关注
原创 从0到1开发一个商用 Agent(智能体),把企业级 Agent 从“搭出来”到“跑起来”!!
在大模型技术迅猛发展的今天,AI 应用正从“泛化对话”迈向“深度业务嵌入”的新阶段。如果说上半场的竞争聚焦于模型能力的展示与通用场景的覆盖,那么下半场的核心战场,则毫无疑问是深入企业业务一线的 Agent(智能体)应用。企业对 AI 的期待早已超越“能聊天、会回答”的初级阶段,转而追求能够理解行业语境、执行复杂任务、保障数据主权,并真正融入业务流程的生产力级智能体。这一趋势并非空穴来风。
2026-01-14 10:30:49
796
原创 大模型的技术生态——怎么理解大模型技术以及应用技术
文章阐述了以大模型为核心的技术生态,强调其需具备自然语言理解、创作和使用工具的能力。Agent智能体作为大模型的"手和脚",使其能够使用工具完成任务。大模型的本质是理解和生成能力的结合,应用过程需要强大的容错处理,因为执行复杂且不稳定。理解大模型原理可从人类能力角度出发,但实现过程却极为复杂。大模型的技术生态本质上就是围绕着大模型这个“人”转的。大家在学习大模型应用开发时会发现有很多种不同的技术方向和框架,而且不同的技术有其使用的业务场景,因此可能就有部分人认为,不同大模型应用技术之间是无关的。
2026-01-09 12:01:24
830
原创 LlamaIndex 深度实战:用《长安的荔枝》学会构建智能问答系统
现在让我们用一张表格总结这三个关键参数:chunk_size:每张卡片写多少字top_k:找几张相关卡片chunk_overlap:相邻卡片重复多少内容1.6 现在,让我们引入术语1.7 小结核心思想:1.把文档切成小块,每块生成"数字指纹";2.问题也生成"指纹",找最相似的块;3.把相关块和问题一起给 AI,让它生成答案;关键优势:✅ 基于你的文档(不会编造)✅ 语义理解(不只是关键词)✅ 可以追溯(知道答案来源)接下来:让我们看看如何用代码实现这个系统!
2026-01-09 11:11:49
1027
原创 LlamaIndex 深度实战:用《长安的荔枝》学会构建智能问答系统
现在让我们用一张表格总结这三个关键参数:chunk_size:每张卡片写多少字top_k:找几张相关卡片chunk_overlap:相邻卡片重复多少内容1.6 现在,让我们引入术语1.7 小结核心思想:1.把文档切成小块,每块生成"数字指纹";2.问题也生成"指纹",找最相似的块;3.把相关块和问题一起给 AI,让它生成答案;关键优势:✅ 基于你的文档(不会编造)✅ 语义理解(不只是关键词)✅ 可以追溯(知道答案来源)接下来:让我们看看如何用代码实现这个系统!
2026-01-06 14:00:21
652
原创 这一篇彻底学会Transformer!(附学习资料)
本文提供了全面的Transformer模型教程,从Seq2Seq和注意力机制基础,到Encoder和Decoder结构详细解析,最后通过机器翻译实战项目加深理解。教程适合深度学习初学者和程序员,系统讲解Transformer核心概念与工作原理,帮助读者从零基础到深入掌握这一重要大模型框架。如果你正在学习深度学习或者大模型相关的内容,肯定听说过Transformer,作为目前最有望实现大一统的模型框架,其影响力不言而喻。
2026-01-06 11:55:25
901
原创 AI构建全景图:六阶段及其方案选型
在开始构建下一个 AI 功能时,我们也许不必要按照每一项都执行。但是,有相对清晰的认识,也是建立品味的过程。只有当见的够多、见过的最佳实践够多,才有可能设计出符合预期、甚至是超出用户预期的产品。
2025-12-31 10:53:04
636
原创 教你从零“手搓”一个大模型,别再只会调用API了
在大模型满天飞的今天,我们是甘心做一个只会调用 OpenAI.chat.completions 的 API 搬运工,还是想真正弄懂那个黑盒子里到底发生了什么?本文将用最朴素的代码,完整的实现一个小型LLM。当你亲手写出 Attention 层的矩阵乘法,亲眼看到模型从输出乱码到学会说话,你会发现:大模型,其实也没那么可怕。RoadMap。
2025-12-29 10:25:15
852
原创 大模型结构化数据流式输出技术详解(附实例)小白到高手进阶,一篇全掌握+赶紧收藏!
文章探讨了在大模型应用中实现结构化数据流式输出的技术方案。针对传统一次性输出导致响应时间长的问题,借鉴网络流式传输思想,提出在接收端对接收的不完整数据进行解析和组装的方法。特别指出解析难点在于处理不完整结构,建议使用栈等数据结构确保数据完整性,并随着数据结构复杂度增加,解析难度也呈几何级增长。这一技术对提升大模型应用前端渲染体验具有重要意义。网络流与模型流式输出同出一门,没有本质上的区别。在大模型应用中,结构化数据在其中扮演着重要角色,特别是在智能体的实现中;
2025-12-27 11:57:31
697
原创 Dify企业版 vs 开源版:6大核心差异,一文讲透【附:高性价比落地方案】
随着AI进一步的发展,越来越多的企业开始着手于内部的私有化AI建设,通过AI应用的构建、普及加强员工AI素养,提升员工工作效率,而Dify凭借其强大而友好的AI大模型应用编排能力,以及开源免费的特性,受到了众多企业的青睐,逐步成为各企业构建私有化AI平台的首选。Dify除了免费的开源版本,还面向各企业提供Dify企业版,因为两者主要的差异点不是在具体的应用功能上,而是在服务,部署方式以及性能方面,大部分文章描述的不是那么通俗易懂,今天,我就通过更简单形象的表达来讲清楚两者的核心差异点。
2025-12-27 11:50:04
936
原创 AI大模型强化学习完整指南:从零基础到精通,一篇掌握PPO到SAPO核心算法!
PPO, GRPO, DAPO, GSPO, SAPO 可以视作一条面向大模型强化学习微调的算法演进链:PPO 作为经典强化学习算法,在旧策略采样、clip 约束小步更新的框架下,让大模型可以稳定做策略梯度;GRPO 通过同一 prompt 下的样本组来估计 empirical advantage,省去了 Value Model 的训练开销;
2025-12-25 12:01:11
595
原创 大模型应用要学会分而治之的思想
大模型长文处理中,只能使用分段处理的思想,这是大模型应用的原则。最近在研究大模型报告生成和长文本处理的功能,然后发现之前在做大模型应用时很少出现上下文超长的情况,最多也就是多轮对话中出现,而多轮对话主要是由于历史记录导致上下文超长,所以只需要做好历史记录管理即可。但在生成报告和长文本处理过程中,其情况和长对话又有一定的区别;因为报告生成和长文本处理一般不涉及历史记录的问题,但需要对文本内容进行分块处理,否则很容易导致上下文超长的问题,而这一点是大模型本身的特性,无法避免。
2025-12-25 11:31:36
999
原创 vLLM-Omni全解析:从文本到多模态AI框架,零基础入门到精通,教程收藏必备!
vLLM-Omni的升级,不是小修小补,而是多模态AI基础设施的革命。它让开发者从繁琐的模态切换中解放,专注创新。2026年,随着更多模型接入,这将成为AI部署的标准框架。
2025-12-24 10:42:54
873
原创 AI大模型能力体系详解:从OpenSkills到AgentSkills,一篇看懂三层架构不混淆!
OpenSkills关心的是这是一种什么能力?边界在哪里?需要哪些证据?AgentSkills关心的是这个Agent能不能跑?用什么工具?成功率多少?Anthropic Skills关心的是这种能力是否可能制造误导?是否需要安全约束?同一个“能力主题”,在三个体系里,被放在了完全不同的层级处理。
2025-12-24 10:12:41
1112
原创 从零开始学AI Agent:多Agent协作框架全解析,一篇就够,速速收藏!
2025年AI Agent趋势转向多Agent协作,模拟人类团队工作。文章详解四大主流框架:LangGraph(状态图驱动)、CrewAI(角色协作)、AutoGen(对话迭代)和MetaGPT(模拟创业团队)。这些框架让AI能够协调、构建、共同进化,2026年多Agent系统将成为主流。开发者建议从LangGraph或CrewAI入手,掌握这些框架将获得Agentic AI核心竞争力。2025年,AI Agent 的创新不再只是单个Agent的智能提升,而是它们如何“像人类团队一样协作”。从单一任务执行,
2025-12-23 21:58:26
843
原创 全面超越Transformer!谷歌提出全新范式嵌套学习!
基于更新频率,定义了一个排序关系(≻)来组织机器学习模型中的各个组件:若组件 A 的更新频率高于 B,或两者频率相同但B 的计算依赖于 A,则称 A ≻ B;若两者互不依赖且频率相同,则视为同频独立。据此,所有组件被划分为多个有序层级——同一层级内组件更新频率一致,层级越高,更新越慢。重要的是,每个组件都对应一个独立的优化问题和专属的上下文(或梯度)流,既适用于参数化模块(如权重、动量),也兼容非参数化结构(如注意力机制),从而。
2025-12-20 11:00:47
802
原创 1300 份问卷告诉你:AI Agent已经卷成这样了
Agent工程是利用大语言模型(LLM)构建可靠系统的迭代过程。由于Agent具有非确定性特征,工程师需要通过快速迭代来不断优化和提升Agent的质量。这是一个全新的工程学科,它不仅需要AI技术能力,还需要系统工程、质量保障和持续优化的综合能力。🚀 规模化部署正在加速- 超过半数企业已将Agent投产,大型企业引领潮流🎯 应用场景多元化- 从客服到数据分析,从内部效率到客户接触点,Agent应用范围不断扩大⚙️ 工程化体系成熟- 可观测性、评估体系成为标配,质量和安全成为核心关注点。
2025-12-20 10:42:42
936
原创 终于有人把大模型讲明白了:LLM从入门到精通全解析
今天的大型语言模型,是史上最强大的LLM,也是未来最弱的LLM。从1966年的ELIZA到2023年的GPT-4,我们见证了从简单模式匹配到几乎通用智能的跨越。但这不是终点,甚至不是中点——预训练规模定律告诉我们,更多数据、更大模型、更优架构,仍将带来持续突破。我们正站在一个历史性的转折点。LLM不仅仅是一项技术进步,它代表了从指令编程到学习型智能的范式革命——计算机第一次不再是执行命令的工具,而是能够理解、学习、创造的"智能体"。这场革命充满希望,也充满挑战。它可能极大提升人类生产力,解决复杂问题。
2025-12-20 10:22:20
1223
原创 大模型杀不死产品经理,但未来我们可能要做产品界的OnlyFans
本文探讨大模型时代产品经理的价值与变革,指出大模型无法取代产品经理,反而带来职业春天。PRD作为消除幻觉和确认责任的重要工具在当前和未来仍有价值。全民生成式应用是伪命题,大多数人仍需要封装好的工具。未来产品研发将分为三类角色:提问题者(产品经理)、解决问题者(工程师)和审美负责人。细分需求赛道和"用完即抛"的解决方案具有发展潜力,人的局限和AI的局限使得产品经理等角色长期存在。这是一篇合辑文,近期跟很多朋友交流了下大模型应用的感受,也有不少观点碰撞,其中很多内容实际上一脉同源,于是整理一下。
2025-12-19 11:53:02
1172
原创 企业级智能问答系统踩坑实录:RAG老是达不到效果的优化方案
本文分享了一个智能问答系统的开发优化过程。针对三个不同子场景的智能问答需求,作者最初采用纯RAG技术建立三个知识库,但效果不佳,出现场景判断不清和召回率低的问题。后通过重新思考,改为按数据类型建立两个知识库(结构化与非结构化),并实现条件查询和相似度查询两个工具,让模型根据需求自主选择。此方案简化了技术实现,大幅提升了系统效果,解决了场景区分和混合数据查询问题。大模型应用开发流程正确,但结果不一定正确。由于大模型技术的复杂性,再加上不同业务场景的特殊需求,导致大模型应用的开发难度很大;
2025-12-19 11:38:09
803
原创 构建高效AI智能体(AI Agents)的十条黄金法则,从入门到精通,一篇就够了!
本文提出构建高质量AI智能体的十条核心法则:拒绝为AI而AI,构建小巧专业解耦的系统,强制结构化输出,解释任务背景而非仅指令,编排优于完全自治,优先提示词工程而非微调,重视工具描述,使用缓存与共享机制,以及全面记录日志。强调AI智能体构建是系统工程,需架构设计与细节并重,才能构建出稳定高效且有业务价值的智能系统。建AI智能体(AI Agents)已成为技术领域最热门的话题之一。然而,从最初的概念验证到真正可用于生产环境的系统,这中间存在着巨大的鸿沟。
2025-12-18 14:15:15
553
原创 AI提示词工程完全指南(超详细)从入门到精通,一篇搞定!建议收藏!
提示词工程的优化与迭代提示词工程强调通过不断优化提示词,提高大模型的输出质量。
2025-12-18 13:44:02
989
原创 AI Agent开发教程(全面详解)从入门到精通,一篇就够了,值得收藏!
本文系统介绍了AI智能体的七大设计模式,包括提示链、路由、并行化三种工作流模式,以及反思、工具使用、规划、多智能体四种智能体模式。文章详细对比了工作流与智能体的适用场景,强调了在构建智能体系统时应保持简洁、处理不确定性,并根据实际需求组合不同模式。通过实证评估不断优化设计是构建高效智能体系统的关键。AI Agent、 Agentic AI、Agentic架构、Agentic工作流、Agentic模式——如今,智能体的概念无处不在。但智能体究竟是什么?我们又该如何构建稳健高效的智能体系统?
2025-12-18 11:57:05
1335
原创 如何微调任何Embedding模型?从入门到精通,普通电脑也能做,一篇就够收藏!
Adapter适配器微调是一种参数高效的微调方法。在预训练模型上添加一个轻量级的适配器层,只训练这个适配器,而冻结原始模型参数。原始嵌入 → [冻结的基础模型] → [可训练的Adapter层] → 微调后的嵌入参数少:Adapter层通常只有几MB,而全量微调需要保存整个模型(几百MB到几GB)训练快:只更新少量参数,训练速度提升10倍以上效果好:在特定任务上,Adapter微调的效果往往接近全量微调Adapter微调是一种参数高效、成本低廉、效果显著的嵌入模型微调方法。
2025-12-17 15:13:13
893
原创 GPT-5.2 发布后,我意识到一件事!
GPT-5.2标志着AI从"工具升级"转变为"生产方式升级",AI角色从辅助工具进化为组织能力,进入"可交付阶段"。它以稳定可靠的表现,使AI能从头到尾完成任务,对AI创业、Agent应用、Prompt工程、开源闭源竞争和小团队发展产生五大冲击。未来AI竞争重点将从"会不会"转向"稳不稳",掌握AI组织能力将成为关键。很多人第一反应是:“GPT-5.2 又强了一点。”但说实话,如果你只看到“强不强”,那你可能已经错过了这次发布真正可怕的地方。我这几天反复体验 GPT-5.2 之后,心里反而有点发凉。不是
2025-12-17 10:40:53
953
原创 AI大模型教程:从零基础入门到精通,一篇掌握AI核心原理与实战应用,不看后悔!
文章指出AI最本质的特点是泛化能力,即触类旁通、举一反三的能力。与传统软件只能管理已有内容不同,AI能在内容间生成新知识,但其泛化能力存在局限,主要表现为"就近泛化"而非人类的"远程泛化"。因此,AI擅长编码等临近泛化任务,但在需要创新思维的远程泛化领域表现较弱。未来AI发展方向包括提升泛化能力和开发专业领域AI。研究表明AI对职业替代率约为11.7%,主要影响是代码类工作而非需要创意的岗位。AI最本质的特点是什么?从哪一个点切入才能更全面、准确、深刻的理解AI?
2025-12-17 10:17:16
1023
原创 LangGraph+DuckDB+ReActAgent实战:Excel问答助手开发指南(超详细)从入门到精通,收藏这篇就够了!
在数据分析场景中,Excel 文件是最常见的数据载体之一。但传统的 Excel 数据分析往往需要用户具备一定的技术能力,比如熟悉公式、透视表或者 SQL 查询。能不能让用户用自然语言直接提问,系统自动完成数据分析并给出可视化结果?本文将详细介绍一个基于支持多文件、多 Sheet 的统一分析自动将 Excel 数据映射为数据库表结构根据自然语言问题生成 SQL 查询智能推荐可视化图表类型实时流式返回思考过程和分析结果维度优势易用性自然语言提问,无需学习 SQL灵活性。
2025-12-11 11:30:07
1022
原创 彻底搞懂了!基于LangGraph与DeepSeek构建深度研究智能体
简单来说,深度研究智能体(Deep Research Agents)是能够对预设主题进行深入研究的系统。这可能涉及创建研究报告的提纲,该提纲最终将成为系统的输出。将上述提纲拆分为可管理的步骤。对报告的各个部分进行深入研究,这意味着需要推理出提供全面分析所需的数据,并利用网络搜索工具来支持分析。反思研究过程中不同步骤生成的数据,并改进结果。总结检索到的数据,并撰写最终的研究报告。首先,我们需要定义整个系统的状态,该状态将在智能体(Agent)在环境中运行时不断演进,并被系统的不同部分选择性地使用。
2025-12-11 11:23:38
860
原创 智能体长期记忆的解决方案,不只是知识库(保姆级部署教程及测评)
如果你正在做:陪伴类 AI、客服类 AI、垂直行业助手(医疗 / 法律 / 教育)、代码助手数字员工。那么你一定需要一个:可靠、可控、可进化、不会消失的长期记忆系统。MemMachine 做到了,并且已经领先市场“半步”以上。AI 的下半场,不是参数之争,而是记忆之争。真正强大的 Agent,一定是能“了解你、记得你、为你变化”的 Agent。MemMachine 可能就是通向那个未来的一块基石。写在最后案例只是一种思路和方法的传递。更多无限的可能还在路上。每一次的尝试都是向成功迈进的一步。
2025-12-10 11:43:13
957
原创 手把手教你微调Embedding模型,从零基础入门到精通,看这一篇就够了!
开箱即用:封装了完整的微调流程,无需手动实现训练循环自动生成训练数据:使用LLM自动生成问答对,大大降低数据准备成本灵活的模型支持:支持多种Embedding模型(BGE、OpenAI等)完善的评估工具:内置评估函数,方便对比不同模型效果通过本文的实战教程,我们完成了:✅ 从PDF文档自动生成训练数据✅ 使用LlamaIndex微调BGE模型✅ 评估并对比微调前后的效果无需人工标注,LLM自动生成训练数据三步完成微调,代码简洁易懂效果显著提升,检索准确率提升14%+
2025-12-08 20:31:23
900
原创 2025企业级AI_Agent(智能体)价值及应用
本文全面介绍了AI大模型的基础知识、技术原理、应用场景和实战案例。从零开始讲解大模型的发展历程、核心架构和训练方法,逐步深入到模型优化、部署和微调等高级技术。内容兼顾理论与实践,适合编程初学者和有经验的开发者,帮助读者系统掌握AI大模型技术,并能在实际项目中灵活应用。
2025-12-06 14:55:59
817
原创 极速上手!用GPTBots.ai打造企业级AI应用!
了解一个产品,最直观的就是产品相关的文档了。在概述里看了下提炼了下• 企业级 AI Agent 无代码构建平台• 零代码• 快速创建• 企业级安全看看GPTBots.ai 解决了哪些痛点问题。痛点解决方案LLM 幻觉知识库增强 + 引用溯源 + 内容审核缺乏垂直知识RAG 系统 + 多格式知识库 + 持续训练无法处理复杂任务FlowAgent 工作流 + 工具集成 + 多 LLM 协同落地难无代码构建 + 端到端交付 + 快速上线AI 人才不足可视化操作 + 专业支持 + 分钟级上手。
2025-12-06 13:54:32
944
原创 还在为找Prompt抓狂?提示词从零基础入门到精通,一篇搞定所有知识点!
YPrompt是一个为AI应用设计的提示词管理系统。它不像那些只是展示提示词的图库,也不是一个简单的AI提词工具。它更像一个提示词专用的GitHub,把提示词当作代码一样来管理。它能把散落在各个聊天框里的提示词碎片,系统地整理和迭代。这个工具内置了一个叫GPrompt的方法,可以引导用户写出更好的提示词。它还引入了类似Git的版本管理概念,可以记录每个提示词的修改历史,方便对比不同版本和一键恢复。下面是它的一些界面截图。这是提示词优化的界面。这是版本管理的功能。还有一个提示词的练习场。
2025-12-05 11:53:18
664
原创 智能体AI的六大核心设计模式,从入门到精通,一篇就够了!
本文详细介绍了六种主流AI智能体设计模式:ReAct的推理-行动循环、CodeAct的代码执行范式、Modern Tool Use的轻量级集成、Self-Reflection的自我评估、Multi-Agent的协作方案以及Agentic RAG的检索增强技术。这些模式从不同维度解决了智能体系统核心挑战,开发者可根据需求选择合适架构,构建更强大可靠的AI智能体系统。随着大模型技术的成熟,智能体正在从概念走向实际应用。
2025-12-05 11:35:57
1045
原创 Token到底是个啥?看完这篇终于懂了!
读到这里,Token还神秘吗?其实Token就是AI世界的"信息积木"。大模型通过计算这些积木之间的关系,推测下一个积木应该是哪个,从而生成连贯的文字。为什么大模型生成内容像"打字"?因为它一个Token一个Token地输出为什么API按使用量计费?因为Token数量对应计算成本为什么有时候大模型"卡住"了?可能是在计算下一个Token的概率分布为什么不同语言成本不同?因为Token切分方式导致的消耗差异。
2025-12-04 13:41:45
757
原创 RAG分块策略完全指南(15种实战方案)从零基础到精通,收藏这一篇就够了!
不存在适用于所有数据的“万能分块策略”根据文档格式、使用场景和用户提问方式选择分块方法用真实数据测试,务必检查大模型输出是否存在上下文偏移和幻觉。
2025-12-04 11:32:59
698
原创 智能体工程师能拿到 20K以上需要具备的能力
很多人都在问:“现在 AI 行业这么火,我要学点什么,才能拿到 20K+ 的薪资?一句话总结——:微调、Agent、部署。这三块构成了一个合格 AI 应用开发工程师的核心能力,也决定了你在行业里的天花板。
2025-12-02 11:48:31
1952
原创 LangChain与LangGraph从零基础到精通,一篇全掌握,值得收藏!
LangChain与LangGraph是AI智能体开发的两大核心框架。LangChain 1.0作为高层抽象框架,适合简单线性任务、标准RAG系统和快速原型;LangGraph 1.0作为底层运行时引擎,专攻复杂智能体系统、长时间工作流、多智能体协作和人工审核场景。两者形成从概念验证到生产部署的完整闭环,开发者可根据项目需求灵活选择或组合使用,实现AI应用的高效构建与稳定运行。2025年10月22日,LangChain官方团队正式发布了与。
2025-12-02 10:30:33
854
原创 如何在零项目经验的前提下准备LLM和Agent方面的经验
文章讲述了如何通过实践获得AI大模型真实项目经验以提升求职竞争力。强调仅调用API不足,需深入理解LLM工作流程,掌握RAG优化技巧,并能解决实际问题。建议从实现功能、优化准确性、部署监控三个维度准备,通过量化评估展示解决问题的能力,证明具备AI项目实战经验。本人最近开始面试AI方面的求职者,具体的要求是,要用过LLM和Agent,当然最好再用过Rag,关键是要有真实项目的经验。本人结合最近的工作经验和面试官的相关经验,先说如下的观点。
2025-12-01 11:42:20
616
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅