11.4 3 的幂【326】
11.4.1 题目描述
给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。
整数 n 是 3 的幂次方需满足:存在整数 x 使得 n == 3 x 3^x 3x
11.4.2 方法一:试除法
思路与算法
我们不断地将 n 除以 3,直到 n=1。如果此过程中 n 无法被 3 整除,就说明 n 不是 3 的幂。
本题中的 n 可以为负数或 0,可以直接提前判断该情况并返回 False,也可以进行试除,因为负数或 0 也无法通过多次除以 3 得到 1。
class Solution {
public boolean isPowerOfThree(int n) {
while (n != 0 && n % 3 == 0) {
n /= 3;
}
return n == 1;
}
}
复杂度分析
- 时间复杂度:O(logn)。当 n 是 3 的幂时,需要除以 3 的次数为 log 3 n = O ( log n ) \log_3 n = O(\log n) log3n=O(logn);当 n 不是 3 的幂时,需要除以 3 的次数小于该值。
- 空间复杂度:O(1)。
11.4.3 方法二:判断是否为最大 3 的幂的约数
思路与算法
我们还可以使用一种较为取巧的做法。
在题目给定的 32 位有符号整数的范围内,最大的 3 的幂为 3^{19} = 1162261467。我们只需要判断 n 是否是 3 19 3^{19} 319的约数即可。
与方法一不同的是,这里需要特殊判断 n 是负数或 0 的情况。
class Solution {
public boolean isPowerOfThree(int n) {
return n > 0 && 1162261467 % n == 0;
}
}
复杂度分析
- 时间复杂度:O(1)。
- 空间复杂度:O(1)。
11.4.4 my answer—快速幂
class Solution {
public boolean isPowerOfThree(int n) {
if(n<0) return false;
for(int i=0;i<30;i++){
if(n==quickMul(3,i))return true;
}
return false;
}
public long quickMul(int x,long N){
if(N==0){
return 1;
}
long y = quickMul(x,N/2);
return N % 2 == 0? y * y : y * y * x;
}
}