【LeetCode-326】3 的幂

这篇博客介绍了两种判断整数是否为3的幂次方的方法:试除法和最大3的幂的约数判断。试除法通过不断除以3直至n等于1来验证;而约数判断法则是检查输入n是否是3的19次幂的约数。这两种方法的时间复杂度均为O(1),空间复杂度为O(1)。
摘要由CSDN通过智能技术生成

11.4 3 的幂【326】

11.4.1 题目描述

给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。

整数 n 是 3 的幂次方需满足:存在整数 x 使得 n == 3 x 3^x 3x

11.4.2 方法一:试除法

思路与算法

我们不断地将 n 除以 3,直到 n=1。如果此过程中 n 无法被 3 整除,就说明 n 不是 3 的幂。

本题中的 n 可以为负数或 0,可以直接提前判断该情况并返回 False,也可以进行试除,因为负数或 0 也无法通过多次除以 3 得到 1。

class Solution {
    public boolean isPowerOfThree(int n) {
        while (n != 0 && n % 3 == 0) {
            n /= 3;
        }
        return n == 1;
    }
}

复杂度分析

  • 时间复杂度:O(logn)。当 n 是 3 的幂时,需要除以 3 的次数为 log ⁡ 3 n = O ( log ⁡ n ) \log_3 n = O(\log n) log3n=O(logn);当 n 不是 3 的幂时,需要除以 3 的次数小于该值。
  • 空间复杂度:O(1)。

11.4.3 方法二:判断是否为最大 3 的幂的约数

思路与算法

我们还可以使用一种较为取巧的做法。

在题目给定的 32 位有符号整数的范围内,最大的 3 的幂为 3^{19} = 1162261467。我们只需要判断 n 是否是 3 19 3^{19} 319的约数即可。

与方法一不同的是,这里需要特殊判断 n 是负数或 0 的情况。

class Solution {
    public boolean isPowerOfThree(int n) {
        return n > 0 && 1162261467 % n == 0;
    }
}

复杂度分析

  • 时间复杂度:O(1)。
  • 空间复杂度:O(1)。

11.4.4 my answer—快速幂

class Solution {

    public boolean isPowerOfThree(int n) {
        if(n<0) return false;
        for(int i=0;i<30;i++){
            if(n==quickMul(3,i))return true;
        }
        return false;
    }

    public long quickMul(int x,long N){
        if(N==0){
            return 1;
        }
        long y = quickMul(x,N/2);
        return N % 2 == 0? y * y : y * y * x;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值