8.1 二叉树的中序遍历【94】
8.1.1 题目描述
给定一个二叉树的根节点 root
,返回 它的 中序 遍历 。
8.1.2 方法一:递归
思路与算法
首先我们需要了解什么是二叉树的中序遍历:按照访问左子树——根节点——右子树的方式遍历这棵树,而在访问左子树或者右子树的时候我们按照同样的方式遍历,直到遍历完整棵树。因此整个遍历过程天然具有递归的性质,我们可以直接用递归函数来模拟这一过程。
定义 inorder(root) 表示当前遍历到 root 节点的答案,那么按照定义,我们只要递归调用 inorder(root.left) 来遍历 root 节点的左子树,然后将 root 节点的值加入答案,再递归调用 inorder(root.right) 来遍历 root 节点的右子树即可,递归终止的条件为碰到空节点。
代码
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
inorder(root, res);
return res;
}
public void inorder(TreeNode root, List<Integer> res) {
if (root == null) {
return;
}
inorder(root.left, res);
res.add(root.val);
inorder(root.right, res);
}
}
复杂度分析
- 时间复杂度:O(n),其中 n 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
- 空间复杂度:O(n)。空间复杂度取决于递归的栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。
8.1.3 方法二:迭代
思路与算法
方法一的递归函数我们也可以用迭代的方式实现,两种方式是等价的,区别在于递归的时候隐式地维护了一个栈,而我们在迭代的时候需要显式地将这个栈模拟出来,其他都相同,具体实现可以看下面的代码。
代码
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
Deque<TreeNode> stk = new LinkedList<TreeNode>();
while (root != null || !stk.isEmpty()) {
while (root != null) {
stk.push(root);
root = root.left;
}
root = stk.pop();
res.add(root.val);
root = root.right;
}
return res;
}
}
复杂度分析
-
时间复杂度:O(n),其中 n 为二叉树节点的个数。二叉树的遍历中每个节点会被访问一次且只会被访问一次。
-
空间复杂度:O(n)。空间复杂度取决于栈深度,而栈深度在二叉树为一条链的情况下会达到 O(n) 的级别。
8.1.4 方法三:Morris 中序遍历
思路与算法
Morris 遍历算法是另一种遍历二叉树的方法,它能将非递归的中序遍历空间复杂度降为 O(1)。
Morris 遍历算法整体步骤如下(假设当前遍历到的节点为 x):
- 如果 x 无左孩子,先将 x 的值加入答案数组,再访问 x 的右孩子,即 x=x.right。
- 如果 x 有左孩子,则找到 x 左子树上最右的节点(即左子树中序遍历的最后一个节点,x 在中序遍历中的前驱节点),我们记为 predecessor。根据 predecessor 的右孩子是否为空,进行如下操作。
- 如果 predecessor 的右孩子为空,则将其右孩子指向 x,然后访问 x 的左孩子,即 x=x.left。
- 如果 predecessor 的右孩子不为空,则此时其右孩子指向 x,说明我们已经遍历完 x 的左子树,我们将 predecessor 的右孩子置空,将 x 的值加入答案数组,然后访问 x 的右孩子,即 x=x.right。
- 重复上述操作,直至访问完整棵树。
参考LeetCode图解更加详细有助于理解!
其实整个过程我们就多做一步:假设当前遍历到的节点为 xx,将 xx 的左子树中最右边的节点的右孩子指向 xx,这样在左子树遍历完成后我们通过这个指向走回了 xx,且能通过这个指向知晓我们已经遍历完成了左子树,而不用再通过栈来维护,省去了栈的空间复杂度。
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> res = new ArrayList<Integer>();
TreeNode predecessor = null;
while (root != null) {
if (root.left != null) {
// predecessor 节点就是当前 root 节点向左走一步,然后一直向右走至无法走为止
predecessor = root.left;
while (predecessor.right != null && predecessor.right != root) {
predecessor = predecessor.right;
}
// 让 predecessor 的右指针指向 root,继续遍历左子树
if (predecessor.right == null) {
predecessor.right = root;
root = root.left;
}else { // 说明左子树已经访问完了,我们需要断开链接
res.add(root.val);
predecessor.right = null;
root = root.right;
}
}else { // 如果没有左孩子,则直接访问右孩子
res.add(root.val);
root = root.right;
}
}
return res;
}
}
复杂度分析
- 时间复杂度:O(n),其中 n 为二叉搜索树的节点个数。Morris 遍历中每个节点会被访问两次,因此总时间复杂度为 O(2n)=O(n)。
- 空间复杂度:O(1)。
8.1.5 my answer—递归
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> inorderTraversal(TreeNode root) {
List<Integer> list = new ArrayList<>();
infixOrder(root,list);
return list;
}
public void infixOrder(TreeNode root,List<Integer> list){
if(root == null)return;
if(root.left != null){
infixOrder(root.left,list);
}
list.add(root.val);
if(root.right != null){
infixOrder(root.right,list);
}
}
}