8.16 完全二叉树的节点个数
8.16.1 题目描述
给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。
完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~
2
h
2^h
2h 个节点。
8.16.2 方法一:二分查找 + 位运算
对于任意二叉树,都可以通过广度优先搜索或深度优先搜索计算节点个数,时间复杂度和空间复杂度都是 O(n),其中 n 是二叉树的节点个数。这道题规定了给出的是完全二叉树,因此可以利用完全二叉树的特性计算节点个数。
规定根节点位于第 0 层,完全二叉树的最大层数为 h。根据完全二叉树的特性可知,完全二叉树的最左边的节点一定位于最底层,因此从根节点出发,每次访问左子节点,直到遇到叶子节点,该叶子节点即为完全二叉树的最左边的节点,经过的路径长度即为最大层数 h。
当 0 ≤ i < h 0 \le i < h 0≤i<h 时,第 i 层包含 2 i 2^i 2i个节点,最底层包含的节点数最少为 1,最多为 2 h 2^h 2h。
当最底层包含 1 个节点时,完全二叉树的节点个数是
∑ i = 0 h − 1 2 i + 1 = 2 h \sum_{i=0}^{h-1}2^i+1=2^h ∑i=0h−12i+1=2h
当最底层包含 2 h 2^h 2h 个节点时,完全二叉树的节点个数是
∑ i = 0 h 2 i = 2 h + 1 − 1 \sum_{i=0}^{h}2^i=2^{h+1}-1 ∑i=0h2i=2h+1−1
因此对于最大层数为 h 的完全二叉树,节点个数一定在$ [2h,2{h+1}-1]$的范围内,可以在该范围内通过二分查找的方式得到完全二叉树的节点个数。
具体做法是,根据节点个数范围的上下界得到当前需要判断的节点个数 k,如果第 k 个节点存在,则节点个数一定大于或等于 k,如果第 k 个节点不存在,则节点个数一定小于 k,由此可以将查找的范围缩小一半,直到得到节点个数。
如何判断第 k 个节点是否存在呢?如果第 k 个节点位于第 h 层,则 k 的二进制表示包含 h+1 位,其中最高位是 1,其余各位从高到低表示从根节点到第 k 个节点的路径,0 表示移动到左子节点,1 表示移动到右子节点。通过位运算得到第 k 个节点对应的路径,判断该路径对应的节点是否存在,即可判断第 k 个节点是否存在。
class Solution {
public int countNodes(TreeNode root) {
if (root == null) {
return 0;
}
int level = 0;
TreeNode node = root;
while (node.left != null) {
level++;
node = node.left;
}
int low = 1 << level, high = (1 << (level + 1)) - 1;
while (low < high) {
int mid = (high - low + 1) / 2 + low;
if (exists(root, level, mid)) {
low = mid;
} else {
high = mid - 1;
}
}
return low;
}
public boolean exists(TreeNode root, int level, int k) {
int bits = 1 << (level - 1); // bits = 100
TreeNode node = root;
while (node != null && bits > 0) {
if ((bits & k) == 0) { // k=12=1100 一次:bits=100 二次:bits=010 三次:bits=001
node = node.left;
} else {
node = node.right;
}
bits >>= 1;
}
return node != null;
}
}
时间复杂度分析
8.16.3 my answer—递归
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public int countNodes(TreeNode root) {
if(root == null)return 0;
return countNodes(root.left) + countNodes(root.right)+1;
}
}