回文词
回文词是一种对称的字符串——也就是说,一个回文词,从左到右读和从右到左读得到的 结果是一样的。任意给定一个字符串,通过插入若干字符,都可以变成一个回文词。你的任务是写 一个程序,求出将给定字符串变成回文词所需插入的最少字符数。
比如字符串“Ab3bd”,在插入两个字符后可以变成一个回文词(“dAb3bAd”或“Adb3bdA”)。 然而,插入两个以下的字符无法使它变成一个回文词。
输入格式:
文件的第一行包含一个整数N,表示给定的字符串的长度,3≤N≤5000。文件的第二行是一个长度为N的字符串。字符串仅由大写字母“A”到“Z”,小写字母“a”到 “z”和数字“0”到“9”构成。大写字母和小写字母将被认为是不同的。
输出格式:
输出文件名是PALIN.OUT,文件只有一行,包含一个整数,表示需要插入的最少字符数。样例输入:
5
Ab3bd
样例输出:
2
数据范围:
3≤N≤5000
动规,对于[x,y]区间的子串,如果c[x]==c[y]则问题转化成求[x+1,y-1]区间的答案,否则,f[x,y]=min(f[x+1,y],f[x,y-1])+1;
动态规划其实与启发式搜索很像,用递归的方式写非常简洁明了。
1 #include<cstdio> 2 #include<iostream> 3 using namespace std; 4 char c[5011]; 5 int f[5001][5001]; 6 inline int dp(int x,int y) 7 { 8 if(f[x][y]!=0) return f[x][y]; 9 if(x>=y) return 0; 10 if(c[x]!=c[y]) f[x][y]=min(dp(x,y-1),dp(x+1,y))+1; 11 else f[x][y]=dp(x+1,y-1); 12 return f[x][y]; 13 } 14 int main() 15 { 16 int n; 17 scanf("%d\n",&n); 18 for(int i=1;i<=n;i++) scanf("%c",&c[i]); 19 printf("%d\n",dp(1,n)); 20 }