Problem Description
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
Input
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
Output
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
Sample Input
2 1 8 4 4 7
Sample Output
0 10
这是一个威佐夫博弈的裸题,我们就判断下奇异局势就好了,如果a = floor( ( b - a )*(1 + √5 ) / 2),那么是奇异局势
#include <iostream> #include <cmath> using namespace std; double mm=(double)sqrt(5.0); int main() { int T,n,m; // cout<<mm<<endl; while(cin>>n>>m) { if(n>m) swap(n,m); int tmp=(double)(m-n)*(1+mm)/2;\\这是有一个取证的问题
if(n==tmp) cout<<"0"<<endl; else cout<<"1"<<endl; } return 0; }