一道数学题目,根据条件可以把N和分裂次数k列成两个次幂表达式,消去k得到关于N的对数关系式,可以用枚举的方式求出N,进而求出k,然后答案就容易求出来了。
#include <stdio.h>
#include <math.h>
int find_N(int A, int B)
{
int i;
for(i=1; i<=1000000; i++)
{
if( fabs(log((double)A)*log((double)i)-log((double)B)*(log((double)(i+1)))) < 1e-9)
break;
}
return i;
}
void func(int A, int N, int k)
{
int cat_num;
int sum;
int i, count;
if(1 != N)
cat_num = floor( ( (1-pow(double(N),double(k)) )/(1-N)) + 0.5 );
else
cat_num = k;
sum = A;
count = 1;
for(i=1; i<=k; i++)
{
count *= N;
sum += A/(N+1) * count;
A /= N+1;
}
printf("%d %d\n", cat_num, sum);
}
int main(void)
{
int A, B;
int N, k;
while(1)
{
scanf("%d %d", &A, &B);
if(!A && !B)
break;
N = find_N(A, B);
k = floor(log((double)A)/log((double)(N+1))+0.5);
func(A, N, k);
//printf("N=%d k=%d\n", N, k);
}
return 0;
}
本文介绍了一种解决特定数学问题的算法实现。该算法通过枚举找到满足条件的N值,并进一步计算出分裂次数k,最终求解出题目所求的答案。文章提供了完整的C语言程序代码,展示了如何通过迭代计算来解决问题。
930

被折叠的 条评论
为什么被折叠?



