uva 107 The Cat in the Hat

本文介绍了一种解决特定数学问题的算法实现。该算法通过枚举找到满足条件的N值,并进一步计算出分裂次数k,最终求解出题目所求的答案。文章提供了完整的C语言程序代码,展示了如何通过迭代计算来解决问题。

一道数学题目,根据条件可以把N和分裂次数k列成两个次幂表达式,消去k得到关于N的对数关系式,可以用枚举的方式求出N,进而求出k,然后答案就容易求出来了。

 

 

#include <stdio.h>
#include <math.h>

int find_N(int A, int B)
{
	int i;
	for(i=1; i<=1000000; i++)
	{
		if( fabs(log((double)A)*log((double)i)-log((double)B)*(log((double)(i+1)))) < 1e-9)
			break;
	}

	return i;
}

void func(int A, int N, int k)
{
	int cat_num;
	int sum;
	int i, count;
	if(1 != N)
		cat_num = floor( ( (1-pow(double(N),double(k)) )/(1-N)) + 0.5 );
	else
		cat_num = k;

	sum = A;
	count = 1;
	for(i=1; i<=k; i++)
	{
		count *= N;
		sum += A/(N+1) * count;
		A /= N+1;
	}
	printf("%d %d\n", cat_num, sum);
}

int main(void)
{
	int A, B;
	int N, k;

	while(1)
	{
		scanf("%d %d", &A, &B);
		if(!A && !B)
			break;
		N = find_N(A, B);
		k = floor(log((double)A)/log((double)(N+1))+0.5);

		func(A, N, k);

		//printf("N=%d k=%d\n", N, k);
	}

	return 0;
}


 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值