- 博客(15)
- 收藏
- 关注
原创 Python海康摄像头SDK二次开发
摘要:为解决海康威视摄像头RTSP拉流延迟严重的问题,本文提出改用海康私有SDK直接取流的方案。通过下载海康设备网络SDK并调用其Python接口,实现了低延迟的视频流获取。文中详细介绍了SDK配置流程,并提供了优化版的Python代码示例,重点解决回调函数处理、队列缓冲和CPU占用等问题。测试结果表明,该方案显著降低了延迟,同时保持了较高的帧率(30FPS以上)和较低的CPU占用率(约2%)。相较于传统OpenCV+FFmpeg的RTSP方案,海康SDK直接取流在实时性方面具有明显优势。
2025-09-12 14:54:39
1756
6
原创 Python读取视频-硬解和软解
视频解码分为软解码和硬解码两种方式。软解码通过CPU计算实现,兼容性强但占用资源高,Python中常用OpenCV、FFmpeg等库;硬解码利用GPU或专用芯片加速,显著降低CPU负载,但需硬件支持。在Python中,OpenCV默认使用软解码,如需硬解需配置特定参数或重新编译。对于NVIDIA显卡用户,可采用FFmpeg+NVDEC或GStreamer+NVDEC方案实现硬解码,但需要额外配置。两种硬解方案示例展示了如何通过PyAV和GStreamer调用CUDA进行硬件加速解码。
2025-09-12 12:18:20
660
原创 OpenCV的cv2.VideoCapture如何加GStreamer后端
本文深入解析OpenCV的后端架构,重点介绍VideoI/O和GUI模块的底层实现机制。OpenCV通过抽象层支持多种后端(FFmpeg、GStreamer、V4L2等),用户可通过API指定或自动选择后端。文章详细对比了GStreamer后端在视频处理链路中的优势,并提供了完整的源码编译指南,包括GStreamer集成、CUDA加速等关键配置步骤。特别针对Windows平台,逐步演示了从环境配置到最终生成的完整流程,包括常见错误的解决方案,为开发者定制高性能OpenCV提供实用参考。
2025-09-12 11:03:34
1408
原创 Supervision库源码学习——line_zone.py解析
Supervision这个库简直是神器,在跟踪上与当前的目标检测、分割模型配合得很好,我在使用过程中由于要深度开发,因此对代码稍微深入了解了一下。我直接把源码部分程序放上来,加上自己的注释,方便理解。2、LineZoneAnnotator类。
2025-05-16 15:51:01
306
原创 Nuitka打包tkcalendar时遇到的问题-tkinter界面
tkinter界面中通常会用到日历控件,常用的是tkcalendar,这个包在编译器中使用时一般没什么问题,但是在打包时会出现问题,无论是Pyinstaller还是Nuitka,网上能查到的都是Pyinstaller解决方案,这里写一下Nuitka的解决方案。
2023-08-01 18:29:51
1497
原创 Tkinter的update()和after()与mainloop()
【代码】Tkinter的update()和after()与mainloop()
2023-05-12 11:03:57
1645
原创 Python+Playwright(Nuitka、Pyinstaller打包)
nuitka, pyinstaller打包playwright/selenium
2022-11-24 12:00:08
7252
12
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅