- 博客(1)
- 收藏
- 关注
原创 kubeflow部署与主要功能使用方案
通过将机器学习工作流拆分为一系列的容器化任务,Kubeflow可以利用Kubernetes的自动扩展、容错和调度功能,确保机器学习任务的高效执行,Kubeflow 提供了一套完整的工具和服务,支持从数据准备、模型训练、调优到部署的整个机器学习生命周期。让机器学习工程师在使用的过程中方便的管理自己的模型并且可以便利的进行参数调优以及通过搭建构建pipline的方式让其完成一系列流水线的操作,如数据清洗,批量操作。在配置页面可以设置名你在,对应的cpu,gpu的调配,创建好之后会出现对应的pod。
2024-08-29 15:19:19 728
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人