最小二乘法的详细推导过程-比之前见过的推导都简单!!!

最小二乘法发展于天文学大地测量学领域,科学家和数学家尝试为大航海探索时期的海洋航行挑战提供解决方案。准确描述天体的行为是船舰在大海洋上航行的关键,水手不能再依靠陆上目标导航作航行。

最小二乘法推导方法一


最小二乘法推导方法二


来源:我是码农,转载请保留出处和链接!

本文链接:http://www.54manong.com/?id=1203

'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646208", container: s }); })();
'); (window.slotbydup = window.slotbydup || []).push({ id: "u3646147", container: s }); })();
  • 10
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
离散型数据的最小二乘法是一种常的回归分析方法,用于拟合离散型数据的线性模型,以估计变量之间的关系。其背景和推导过程如下: 背景: 在实际应用中,我们常常需要对离散型数据进行拟合和估计,例如对销售数据、用户行为数据等进行分析和预测。离散型数据通常无法直接使用传统的最小二乘法进行拟合,因此需要采用离散型数据的最小二乘法进行拟合和估计。 推导过程: 离散型数据的最小二乘法推导过程与连续型数据的最小二乘法类似,其基本思想是将离散型数据拟合成一条直线,使得所有数据点与直线的距离之和最小。 假设我们有一组离散型数据 $(x_1,y_1),(x_2,y_2),\dots,(x_n,y_n)$,其中 $x_i$ 表示自变量的取值,$y_i$ 表示因变量的取值。我们希望通过这组数据来拟合一条直线 $y = a+bx$,使得数据点与直线的距离之和最小。 首先,我们需要定义距离的度量方式。对于离散型数据,我们通常采用垂直距离来度量数据点与直线的距离。具体地,对于每个数据点 $(x_i,y_i)$,其到直线 $y = a+bx$ 的垂直距离为 $d_i = y_i - (a+bx_i)$。 然后,我们需要最小化所有数据点与直线的距离之和。即: $$ S=\sum_{i=1}^{n}d_i^2=\sum_{i=1}^{n}(y_i-a-bx_i)^2 $$ 为了求出最小化距离之和的直线方程,我们需要对 $S$ 进行求导并令其为 $0$,得到: $$ \begin{cases} \dfrac{\partial S}{\partial a}=-2\sum_{i=1}^{n}(y_i-a-bx_i)=0 \\ \dfrac{\partial S}{\partial b}=-2\sum_{i=1}^{n}(y_i-a-bx_i)x_i=0 \end{cases} $$ 解上述方程组,可得到最小二乘法的一般形式: $$ \begin{cases} a=\bar{y}-b\bar{x} \\ b=\dfrac{\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})}{\sum_{i=1}^{n}(x_i-\bar{x})^2} \end{cases} $$ 其中,$\bar{x}$ 和 $\bar{y}$ 分别为自变量和因变量的均值,即: $$ \bar{x}=\dfrac{1}{n}\sum_{i=1}^{n}x_i,\quad \bar{y}=\dfrac{1}{n}\sum_{i=1}^{n}y_i $$ 最后,我们可以使用上述公式来计算离散型数据的最小二乘法,并得到拟合直线的方程 $y = a+bx$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值