numpy的基本知识

1.函数库的导入

import numpy #或者
import numpy as np
  • 1
  • 2

2.基本运算

求和 .sum() 
求最大值 .max() 
求最小值 .min() 

求平均数 .mean()

import numpy as np

test1 = np.array([[5, 10, 15],
            [20, 25, 30],
            [35, 40, 45]])
test1.sum()
# 输出 225
test1.max()
# 输出 45
test1.min()
# 输出 5
test1.mean()
# 输出 25.0
  • 1
  • 矩阵行求和 .sum(axis=1)
test1 = np.array([[5, 10, 15],
            [20, 25, 30],
            [35, 40, 45]])
test1.sum(axis=1)
# 输出 array([30, 75, 120])
  • 1
  • 矩阵列求和 .sum(axis=0)
test1 = np.array([[5, 10, 15],
            [20, 25, 30],
            [35, 40, 45]])
test1.sum(axis=0)
# 输出 array([60, 75, 90])
  • 1
  • 矩阵乘法:矩阵乘法是 a 的行和 b 的列的乘积之和

a = np.array([[1, 2],

[3, 4]])

b = np.array([[5, 6],

[7, 8]])

矩阵乘法 = 1 * 5 + 2 * 7 = 19 1 * 6 + 2 * 8 = 22

3 * 5 + 4 * 7 = 43 3 * 6 + 4 * 8 = 50

import numpy as np
a = np.array([[1, 2],
              [3, 4]])
b = np.array([[5, 6],
              [7, 8]])
print (a*b) # 对应位置元素相乘
print (a.dot(b)) # 矩阵乘法
print (np.dot(a, b)) # 矩阵乘法,同上
# 输出 [[5 12]
       [21 32]]
      [[19 22]
       [43 50]]
      [[19 22]
       [43 50]]  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值