数据结构 —— 图解AVL树(平衡二叉树)插入节点的变化

1、前提

学习本文章之前提是必须先了解 AVL树(平衡二叉树)的定义:
https://blog.csdn.net/xiaojin21cen/article/details/97602146

本文通过插入若干节点,学习 AVL树的左旋、右旋、左右旋、右左旋的变化。

2、示例1

初始状态如下:
在这里插入图片描述

然后我们插入数值:

1、4、5、6、7、10、9、8

1.1、插入 1:
在这里插入图片描述

插入1后,节点3失去平衡,是左-左型,需要右旋调整:
在这里插入图片描述

1.2、插入4:
在这里插入图片描述

1.3、继续插入 5 :
在这里插入图片描述

插入5后,节点2、3失去平衡,是右-右型,左旋转:
在这里插入图片描述

1.4、继续插入6 :
在这里插入图片描述

插入5后,节点2、3失去平衡,变成右-右型,需要进行左旋:
在这里插入图片描述

1.5、继续插入7:

在这里插入图片描述

插入7后,节点5失去平衡,变成右-右型,需要进行左旋:

在这里插入图片描述

1.6、继续插入10 :
在这里插入图片描述

1.7、继续插入9 :
在这里插入图片描述

出现了这种情况怎么办呢?对于这种 右-左型的情况,单单一次左旋或右旋是不行的,下面我们先说说如何处理这种情况。

1.8、举列说明
在这里插入图片描述

上面的这种我们就把它称之为右-左 型

处理的方法是 先对节点10右旋转,把它变成右-右型:
在这里插入图片描述

对它进行右旋再左旋:
在这里插入图片描述

所以对于这种右-左型的,我们需要进行一次右旋再左旋

同理,也存在左-右型的,例如:
在这里插入图片描述

对于左-右型的情况和刚才的 右-左型相反,对它先进行一次左旋,再右旋。
在这里插入图片描述

1.9、回到原题上 ,插入 9 后,变成了右左型,需要进行右左旋转:

在这里插入图片描述

3、示例2

1、新建AVL树
新建AVL树的根节点root。

3,2,1,4,5,6,7,16,15,14,13,12,11,10,8,9

2、依次添加 到AVL树中,过程如下。

2.1、添加 3、2

添加 3,2 都不会破坏AVL树的平衡性。
在这里插入图片描述

2.2、添加 1
添加 1 之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。

旋转过程如下:
在这里插入图片描述

2.3、添加 4
添加 4 不会破坏AVL树的平衡性。
在这里插入图片描述

2.4、添加 5
添加 5 之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。

旋转过程如下:
在这里插入图片描述

2.5、添加 6
添加 6 之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。

旋转过程如下:
在这里插入图片描述

2.6、添加 7
添加 7 之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。

旋转过程如下:
在这里插入图片描述

2.7、添加 16
添加 16 不会破坏AVL树的平衡性。
在这里插入图片描述

2.8、添加 15
添加 15 之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。

旋转过程如下:
在这里插入图片描述

2.9、添加 14
添加 14 之后,AVL树失去平衡(RL),此时需要对AVL树进行旋转(RL旋转)。

旋转过程如下:
在这里插入图片描述

2.10、添加 13
添加 13 之后,AVL树失去平衡(RR),此时需要对AVL树进行旋转(RR旋转)。

旋转过程如下:
在这里插入图片描述

2.11、添加 12
添加 12 之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。

旋转过程如下:
在这里插入图片描述

2.12、添加11
添加 11 之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。

旋转过程如下:
在这里插入图片描述

2.13、添加10
添加 10 之后,AVL树失去平衡(LL),此时需要对AVL树进行旋转(LL旋转)。

旋转过程如下:
在这里插入图片描述

2.14、添加 8
添加 8 不会破坏AVL树的平衡性。
在这里插入图片描述

2.15、添加 9
但是添加 9 之后,AVL树失去平衡(LR),此时需要对AVL树进行旋转(LR旋转)。

旋转过程如下:
在这里插入图片描述

3、打印树的信息

输出下面树的信息:
在这里插入图片描述

前序遍历: 7 4 2 1 3 6 5 13 11 9 8 10 12 15 14 16
中序遍历: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
后序遍历: 1 3 2 5 6 4 8 10 9 12 11 14 16 15 13 7
高度: 5
最小值: 1
最大值: 16

4、删除节点8

删除操作并不会造成AVL树的不平衡。
在这里插入图片描述

删除节点8之后,在打印该AVL树的信息。

高度: 5
中序遍历: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16

4、 参考文章:

https://www.cnblogs.com/zhuwbox/p/3636783.html

https://www.cnblogs.com/skywang12345/p/3576969.html

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
平衡二叉树是一种特殊的二叉树,它的左右子树的高度差不超过1。AVL树是一种自平衡的二叉搜索树,它的高度始终保持在O(log n)。 下面是C语言实现平衡二叉树AVL树)的代码: ``` #include <stdio.h> #include <stdlib.h> /* 定义平衡二叉树节点结构体 */ struct AVLNode { int data; // 存储的数据 int height; // 节点高度 struct AVLNode *leftChild; // 左子树 struct AVLNode *rightChild; // 右子树 }; /* 获取节点高度 */ int getHeight(struct AVLNode *node) { if (node == NULL) { return -1; } else { return node->height; } } /* 获取节点平衡因子 */ int getBalanceFactor(struct AVLNode *node) { if (node == NULL) { return 0; } else { return getHeight(node->leftChild) - getHeight(node->rightChild); } } /* 更新节点高度 */ void updateHeight(struct AVLNode *node) { node->height = 1 + (getHeight(node->leftChild) > getHeight(node->rightChild) ? getHeight(node->leftChild) : getHeight(node->rightChild)); } /* 右旋操作 */ struct AVLNode *rotateRight(struct AVLNode *node) { struct AVLNode *newRoot = node->leftChild; node->leftChild = newRoot->rightChild; newRoot->rightChild = node; updateHeight(node); updateHeight(newRoot); return newRoot; } /* 左旋操作 */ struct AVLNode *rotateLeft(struct AVLNode *node) { struct AVLNode *newRoot = node->rightChild; node->rightChild = newRoot->leftChild; newRoot->leftChild = node; updateHeight(node); updateHeight(newRoot); return newRoot; } /* 插入操作 */ struct AVLNode *insert(struct AVLNode *root, int data) { if (root == NULL) { root = (struct AVLNode *) malloc(sizeof(struct AVLNode)); root->data = data; root->height = 0; root->leftChild = NULL; root->rightChild = NULL; } else if (data < root->data) { root->leftChild = insert(root->leftChild, data); if (getHeight(root->leftChild) - getHeight(root->rightChild) == 2) { if (data < root->leftChild->data) { root = rotateRight(root); } else { root->leftChild = rotateLeft(root->leftChild); root = rotateRight(root); } } } else if (data > root->data) { root->rightChild = insert(root->rightChild, data); if (getHeight(root->rightChild) - getHeight(root->leftChild) == 2) { if (data > root->rightChild->data) { root = rotateLeft(root); } else { root->rightChild = rotateRight(root->rightChild); root = rotateLeft(root); } } } updateHeight(root); return root; } /* 中序遍历 */ void inOrderTraversal(struct AVLNode *root) { if (root != NULL) { inOrderTraversal(root->leftChild); printf("%d ", root->data); inOrderTraversal(root->rightChild); } } int main() { struct AVLNode *root = NULL; int data[] = {5, 2, 8, 1, 3, 6, 9}; int len = sizeof(data) / sizeof(data[0]); int i; for (i = 0; i < len; i++) { root = insert(root, data[i]); } inOrderTraversal(root); return 0; } ``` 以上代码实现了平衡二叉树插入和中序遍历操作。在插入操作中,根据插入节点的值和当前节点的值的大小关系,不断递归向左或向右子树进行插入操作,并在递归返回时更新节点高度和进行平衡操作。在平衡操作中,根据节点的平衡因子进行旋转操作,使树重新平衡。在中序遍历操作中,按照左子树、根节点、右子树的顺序遍历树中的节点,输出节点的值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值