菜市场大妈都在学的胖东来陈列术

连摊煎饼的阿姨都问我:

"姑娘你这书能借我抄笔记吗?"
🔥《何以胖东来》彻底扒开了
河南商超顶流的"视觉撩客术"
原来让顾客疯狂拍照的货架
藏着3个致命心机👇
❶【反常识底层逻辑】
▶️"乱中有序"才是烟火气密码
水果堆成金字塔反而没人敢碰
▶️ 打光要像给草莓拍写真
生鲜区用柔光镜效果
❷【万能场景公式】
菜场阿姨套用后
摊位业绩涨了40%!
▶️ 早市用"露水美学"
绿叶菜喷水珠+竹编筐
▶️ 晚市搞"剩菜逆袭"
蔫儿菜捆成9.9元盲盒花束
❸【跨界降维案例】
花店老板用胖东来动线
七夕爆单500束!
▶️ 奶茶店学"试吃哲学"
每款配料用小碟陈列
▶️ 服装店复刻"翻乱补贴"
导购整理试衣间发5元券
现在刷到就是大数据在提醒你
实体店自救指南
谁还没学我真的会急!!
基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip,个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.zip基于stm32的智能分拣小车具有颜色识别、循迹、机械臂抓取等功能.z
基于STM32智能循迹避障小车源码(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做毕业设计的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、期末大作业,代码资料完整,下载可用。 基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车源码(高分项目)基于STM32智能循迹避障小车
### 一、LDA模型简介 Latent Dirichlet Allocation (LDA) 是一种基于概率的主题模型,用于从文档集合中发现潜在的主题结构。它假设每篇文档是由多个主题混合而成,而每个主题又由一组单词的概率分布表示[^1]。 #### LDA生成过程 LDA 的生成过程可以描述为以下几步: 1. 对于每一个主题 \( k \),从狄利克雷先验分布 \( \beta_k \sim Dir(\eta) \) 中抽取一个单词分布 \( \phi_k \)[^4]。 2. 对于每一篇文档 \( d \),从另一个狄利克雷先验分布 \( \alpha_d \sim Dir(\alpha) \) 抽取该文档的主题分布 \( \theta_d \)[^3]。 3. 随机决定文档中的每个单词所属的主题,并根据对应的主题分布采样得到具体的单词。 #### LDA核心公式 LDA 模型的核心在于其概率推导和参数估计方法。具体而言,LDA 使用 Gibbs Sampling 或 Variational Inference 来近似计算后验分布 \( P(z|w,\alpha,\beta) \),其中 \( z \) 表示隐藏变量(即主题分配),\( w \) 表示观测到的单词序列。 \[ P(z_{d,n} = k | z_{-d,-n}, w, \alpha, \beta) \propto \frac{n_{k,-i}^{(w_i)}+\beta}{\sum_{v=1}^V(n_{k,-i}^{(v)}+\beta)+N}\left(n_{d,-i}^{(k)}+\alpha\right) \] 上述公式展示了如何通过条件概率更新每个单词的主题分配。 --- ### 二、LDA模型的应用 LDA 主题模型广泛应用于自然语言处理领域以及数据分析场景,主要用途包括但不限于以下几个方面: #### 文本分类与聚类 通过对大量文本数据进行建模,LDA 可以提取出具有代表性的隐含主题,从而帮助完成文本分类或无监督聚类任务[^2]。 #### 特征降维 LDA 能够将高维度的稀疏文本向量转化为低维度的主题空间表示,有效减少冗余信息并提升后续机器学习算法的表现性能。 #### 推荐系统 利用用户历史行为记录构建兴趣画像,再结合物品内容特性分析两者之间的匹配程度,最终实现个性化推荐服务。 #### 数据可视化 借助 t-SNE 或 pyLDAvis 工具库,可将抽象复杂的多维主题关系映射至二维平面上直观展示出来,便于研究人员探索大规模语料库内部规律特点。 ```python import gensim from gensim import corpora # 构造字典和语料矩阵 dictionary = corpora.Dictionary(documents) corpus = [dictionary.doc2bow(text) for text in documents] # 训练LDA模型 lda_model = gensim.models.ldamodel.LdaModel(corpus, id2word=dictionary, num_topics=10, random_state=100, passes=10) # 输出前几个主题及其关键词 topics = lda_model.print_topics(num_words=5) for topic in topics: print(topic) ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值