rsa加密算法

【RSA加密算法】

加密过程

步骤 说明 描述

1. 选择一对不相等且足够大的质数 p,q

2. 计算p,q的乘积 n=p*q

3. 计算n的欧拉函数 φ(n)=(p-1)*(q-1)

4. 选一个与φ(n)互质的整数e 1

5. 计算出e对于φ(n)的模反元素d de mod φ(n)=1

6. 公钥 KU=(e,n)

7. 私钥 KR=(d,n)

明文 M 加密 M^emod n =C

密文 C 解密 C^dmodn=M

三.计算n的欧拉函数

1.欧拉函数是小于n的正整数中与n互质的数的数目:φ(n)

2.互质是公约数只有1的两个整数,叫做互质整数

质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数

3.如果n可以分解成2个互质的整数之积,那么n的欧拉函数等于这两个因子的欧拉函数之积:

即若n=p*q,且p,q互质,则φ(n)=φ(p*q)=φ(p-1)*φ(q-1)

四.计算模反元素d

如果两个正整数e和φ(n)互质,那么一定可以找到一个整数d,使得ed-1被φ(n)整除,或者说ed除以φ(n)所得余数为1.此时,d就叫做e的模反元素

ed modφ(n)=1

e*(d+kφ(n)) modφ(n)=1

M^(Kφ(n))=1

题:在一次RSA密钥对生成中,假设p=473398607161,q=4511491,e=17

求解出d作为flag提交

在pycharm中

beb85c7179864e31bf8ed04121d8f53f.png

gmpy2中的函数invert()求大整数ed模φ(n)的逆元d,解得flag{125631357777427553}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值