TAHOMA
应用场景:
主要关注在推理之前加载和准备数据的成本,但目的是减少DNN执行成本
(1)在这种情况下,大量历史图像数据归档储存在本地驱动器上。每个图像都必须首先从硬盘中加载,然后转换为分类器的适当输入格式。
(2)视频从其源头不断地摄取到一个基于数据中心的查询系统中,在这里,视频被转化为适当的表示形式,存储在SSD上,供以后查询。由于这些数据是在获取时进行转换的,所以在查询时只考虑从磁盘加载表示的成本。
(3)如果计算节点在网络的边缘(例如,连接到监控摄像头),图像可以直接提供给分类器。因为从摄像机到内存的传输成本可以忽略不计,因此只考虑图像转换成本。
解决的问题:
图像分类
将基于内容的查询限制为二分类查询
Baseline:
Resnet50分类器、NoScope
描述:
通过分类器级联,优化数据处理成本并加快分析处理的速度。
Example:
假如有两个图像分类模型M1和M2
M1:接收3通道全彩色224224图像作为输入,卷积层较少 ——>推理更快
M2:接收1通道灰度224224图像作为输入,附加卷积层 ——> 精度高
Motivation:
深度神经网络在分析数据库系统部署时,会带来相当大的计算挑战:一个模型对单幅图像的推理可能需要一系列冗长的大张量乘法ÿ

最低0.47元/天 解锁文章


被折叠的 条评论
为什么被折叠?



