Quality-Estimation0 (翻译质量评价-使用 BERT 特征训练 QE 模型)

本文介绍了一种结合BERT和Bi-LSTM的翻译质量评估方法,旨在自动评估机器翻译的准确性。该方法首先利用BERT生成翻译句对中单词的上下文嵌入,然后将这些嵌入输入到Bi-LSTM中,最后使用模型的输出来计算翻译质量评分。实验在WMT17数据集上进行,结果显示了该方法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

翻译质量评价(Quality Estimation,QE)是机器翻译领域中的一个子任务,大致可分为 Sentence-level QE,Word-level QE,Phrase-level QE,详情可参考WMT(workshop machine translation)比赛官网 http://www.statmt.org/wmt17/quality-estimation-task.html 。本项目针对 Sentence-level QE,使用 bert生成翻译句对中单词的 context embedding,然后将其输入到Bi-LSTM中,使用最后一个隐层节点的输出计算翻译质量评分。由于 wmt18-qe 的测试集标签没有公布,本项目仅在 wmt17-qe 数据集上进行实验。

实验需要的包

tensorflow >= 1.11.0;
keras(在2.2.4下测试通过,其他版本应该也是可以的,请自行尝试);
matplotlib;

实验步骤

代码见github : https://github.com/xlniu/Quality-Estimation0

1、 准备数据,下载17年wmt sentence level的数据,并将数据改写成标准形式:‘src ||| mt’,示例:‘Who was Jim Henson ? ||| J

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值