简介
翻译质量评价(Quality Estimation,QE)是机器翻译领域中的一个子任务,大致可分为 Sentence-level QE,Word-level QE,Phrase-level QE,详情可参考WMT(workshop machine translation)比赛官网 http://www.statmt.org/wmt17/quality-estimation-task.html 。本项目针对 Sentence-level QE,使用 bert生成翻译句对中单词的 context embedding,然后将其输入到Bi-LSTM中,使用最后一个隐层节点的输出计算翻译质量评分。由于 wmt18-qe 的测试集标签没有公布,本项目仅在 wmt17-qe 数据集上进行实验。
实验需要的包
tensorflow >= 1.11.0;
keras(在2.2.4下测试通过,其他版本应该也是可以的,请自行尝试);
matplotlib;
实验步骤
代码见github : https://github.com/xlniu/Quality-Estimation0
1、 准备数据,下载17年wmt sentence level的数据,并将数据改写成标准形式:‘src ||| mt’,示例:‘Who was Jim Henson ? ||| J