数据分析释义以及如何用Python实现数据分析?

本文介绍了数据分析的概念,强调Python在数据分析中的重要性,特别是其易用性和丰富的库。通过Python实现数据分析,包括使用Excel功能的Python替代方法,如自定义函数和可视化。还提供了Python学习资源推荐,包括学习路线、工具和实战案例,以及面试准备材料。
摘要由CSDN通过智能技术生成

什么是数据分析?

数据分析是指收集来的大量数据使用适当的分析方法进行分析,运用高效的分析工具将他们加以分类和汇总,并提取其中最有价值的信息,概况总结形成有效结论,挖掘数据最大价值的过程.

简单来说

数据分析的目的是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在规律。
Python是一种面向对象、直译式计算机程序设计语言,由于他简单、易学、免费开源、可移植性、可扩展性等特点,Python又被称之为胶水语言。下图为主要程序语言近年来的流行趋势,Python受欢迎程度扶摇直上。

由于Python拥有非常丰富的库,使其在数据分析领域也有广泛的应用。

为什么数据分析要学习Python?

随着大数据时代的来临和Python编程语言的火爆,Python数据分析早已成为现在职场人的必备核心技能。

img

如何用Python实现数据分析?

除了爬虫,分析数据也是Python的重要用途之一,**Excel能做的事,Python究竟怎么实现呢;Excel不能做的事,Python又是否能实现呢?**利用电影票房数据,我们分别举一个例子说明:

  • Python分析

在做好数据采集和导入后,选择字段进行初步分析可以说是数据分析的必经之路。在Dataframe数据格式的帮助下,这个步骤变得很简单。

比如当我们想看单周票房第一的排名分别都是哪些电影时,可以使用pandas工具库中常用的方法,筛选出周票房为第一名的所有数据,

并保留相同电影中周票房最高的数据进行分析整理:

import pandas as pd
data = pd.read_csv('中国票房数据爬取测试20071-20192.csv',engine='python')
data[data['平均上座人数']>20]['电影名']
#计算周票房第一随时间变化的结果,导入数据,并选择平均上座人数在20以上的电影为有效数据
dataTop1_week = data[data['排名']==1][['电影名','周票房']]
#取出周票房排名为第一名的所有数据,并保留“电影名”和“周票房”两列数据
dataTop1_week = dataTop1_week.groupby('电影名').max()['周票房'].reset_index()
#用“电影名”来分组数据,相同电影连续霸榜的选择最大的周票房保留,其他数据删除
dataTop1_week = dataTop1_week.sort_values(by='周票房',ascending=False)
#将数据按照“周票房”进行降序排序
dataTop1_week.index = dataTop1_week['电影名']
del dataTop1_week['电影名']
#整理index列,使之变为电影名,并删掉原来的电影名列
dataTop1_week
#查看数据

img

9行代码,我们完成了Excel里的透视表、拖动、排序等鼠标点击动作。最后再用Python中的可视化包matplotlib,快速出图:

img

img

  • 函数化分析

以上是一个简单的统计分析过程。接下来就讲讲Excel基础功能不能做的事——自定义函数提效。观察数据可以发现,

数据中记录了周票房和总票房的排名,那么刚刚计算了周票房排名的代码,还能不能复用做一张总票房分析呢?

img

当然可以,只要使用def函数和刚刚写好的代码建立自定义函数,并说明函数规则即可:

def pypic(pf):

#定义一个pypic函数,变量是pf

dataTop1_sum = data[[‘电影名’,pf]]

#取出源数据中,列名为“电影名”和pf两列数据

dataTop1_sum = dataTop1_sum.groupby(‘电影名’).max()[pf].reset_index()

#用“电影名”来分组数据,相同电影连续霸榜的选择最大的pf票房保留,其他数据删除

dataTop1_sum = dataTop1_sum.sort_values(by=pf,ascending=False)

#将数据按照pf进行降序排序

dataTop1_sum.index = dataTop1_sum[‘电影名’]

del dataTop1_sum[‘电影名’]

#整理index列,使之变为电影名,并删掉原来的电影名列

dataTop1_sum[:20].iloc[::-1].plot.barh(figsize = (6,10),color = ‘orange’)

name=pf+‘top20分析’

plt.title(name)

#根据函数变量名出图

定义函数后,批量出图so easy:

img

img

学会函数的构建,一个数据分析师才算真正能够告别Excel的鼠标点击模式,迈入高效分析的领域

想要学习Python数据分析入门教程可以认真看一下这篇文章,相信很多东西你会恍然大悟。

以上就是今天的全部内容分享,觉得有用的话欢迎点赞收藏哦!

Python经验分享

学好 Python 不论是用于就业还是做副业赚钱都不错,而且学好Python还能契合未来发展趋势——人工智能、机器学习、深度学习等。
小编是一名Python开发工程师,自己整理了一套最新的Python系统学习教程,包括从基础的python脚本到web开发、爬虫、数据分析、数据可视化、机器学习等。如果你也喜欢编程,想通过学习Python转行、做副业或者提升工作效率,这份【最新全套Python学习资料】 一定对你有用!

小编为对Python感兴趣的小伙伴准备了以下籽料 !

对于0基础小白入门:

如果你是零基础小白,想快速入门Python是可以考虑培训的!

  • 学习时间相对较短,学习内容更全面更集中
  • 可以找到适合自己的学习方案

包括:Python激活码+安装包、Python web开发,Python爬虫,Python数据分析,人工智能、机器学习、Python量化交易等学习教程。带你从零基础系统性的学好Python!

一、Python所有方向的学习路线

Python所有方向路线就是把Python常用的技术点做整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、学习软件

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

三、入门学习视频

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

四、实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。


最新全套【Python入门到进阶资料 & 实战源码 &安装工具】(安全链接,放心点击)

我已经上传至CSDN官方,如果需要可以扫描下方官方二维码免费获取【保证100%免费】

*今天的分享就到这里,喜欢且对你有所帮助的话,记得点赞关注哦~下回见 !

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值