Windows下Qt读取系统的内存、CPU、GPU等使用信息

一、前言

在当今计算机应用广泛的领域中,了解系统的内存、CPU和GPU使用情况是非常重要的。对于开发人员和系统管理员来说,准确获取这些信息可以帮助他们优化软件性能、诊断问题并做出相应的调整。在Windows平台上实现这一目标会涉及到调用Windows系统API,使用合适的工具和库来获取所需的信息。

本文将介绍如何使用Qt和Windows API来读取系统的内存、CPU和GPU使用详细信息。将提供一个完整的示例代码,展示了如何使用这些技术来获取系统的关键性能指标。通过阅读本文,将学习如何使用Qt框架和Windows API来实现这些功能,以及如何根据需求进行扩展和定制。

二、获取系统的配置信息

image-20230802170722887

image-20230802170704709

#include <QApplication>

#include <QtWidgets/QApplication>
#include <QtWidgets/QMainWindow>
#include <QtWidgets/QLabel>
#include <QSysInfo>
#include <QProcess>
#include <QDebug>

#include <QDebug>
#include <Windows.h>


#pragma execution_character_set("utf-8")

int main(int argc, char *argv[])
{
    QApplication a(argc, argv);


    QMainWindow window;
     window.resize(400, 300);

     QLabel *label = new QLabel(&window);
     label->setAlignment(Qt::AlignCenter);
     label->setWordWrap(true);
     window.setCentralWidget(label);

     // 获取系统内存信息
     QString memoryInfo = "Memory Information:\n";

     MEMORYSTATUSEX memoryStatus;
         memoryStatus.dwLength = sizeof(memoryStatus);
         if (GlobalMemoryStatusEx(&memoryStatus)) {
             memoryInfo+=QString("Total Physical Memory: %1 %2\n").arg(memoryStatus.ullTotalPhys / (1024 * 1024)).arg("MB");
             memoryInfo+=QString("Available Physical Memory: %1 %2\n").arg(memoryStatus.ullAvailPhys / (1024 * 1024)).arg("MB");
             memoryInfo+=QString("Total Virtual Memory: %1 %2\n").arg(memoryStatus.ullTotalVirtual / (1024 * 1024)).arg("MB");
             memoryInfo+=QString("Available Virtual Memory: %1 %2\n").arg(memoryStatus.ullAvailVirtual / (1024 * 1024)).arg("MB");
         } else {
             memoryInfo+=QString("无法获取内存使用情况信息。\n");
         }

     // 获取CPU信息
     QString cpuInfo = "CPU Information:\n";
     QProcess cpuProcess;
     cpuProcess.start("wmic cpu get Name");
     cpuProcess.waitForFinished();
     QString cpuResult = cpuProcess.readAllStandardOutput();
     QString cpuName = cpuResult.split("\n").at(1).trimmed();
     cpuInfo += "Model: " + cpuName + "\n";

     // 获取GPU信息
     QString gpuInfo = "GPU Information:\n";
     QProcess gpuProcess;
     gpuProcess.start("wmic path win32_VideoController get Name");
     gpuProcess.waitForFinished();
     QString gpuResult = gpuProcess.readAllStandardOutput();
     QStringList gpuList = gpuResult.split("\n", QString::SkipEmptyParts);
     for (int i = 1; i < gpuList.size(); i++) {
         QString gpuName = gpuList.at(i).trimmed();
         gpuInfo += "GPU " + QString::number(i) + ": " + gpuName + "\n";
     }

     // 在标签中显示系统信息
     QString systemInfo = memoryInfo + "\n" + cpuInfo + "\n" + gpuInfo;
     label->setText(systemInfo);

     window.show();


    //Widget w;
    //w.show();
    return a.exec();
}

三、wmic

wmic是Windows Management Instrumentation Command-line(WMI命令行)实用工具的缩写。它提供了一个命令行界面,可以通过WMI接口与操作系统进行交互和管理。以下是对wmic的详细介绍:

【1】基本概念:Windows Management Instrumentation(WMI)是微软提供的一种标准化的系统管理技术,允许开发人员和管理员使用编程方式来监视和控制Windows操作系统上的资源。WMI提供了一个信息框架,以获取有关计算机硬件、软件和操作系统配置的详细信息。

【2】功能:wmic允许用户通过命令行执行各种系统管理任务,包括查询、修改和监视操作系统中的各种设置和资源,如进程、服务、磁盘驱动器、网络适配器等。它还可以与远程计算机通信,并将结果输出为文本、XML或HTML格式。通过wmic,你可以轻松地获取系统信息、执行管理任务和编写自动化脚本。

【3】语法和用法:wmic的基本语法是wmic <命令> [参数]

常用的命令包括:

  • wmic os:获取操作系统的详细信息。
  • wmic cpu:获取CPU的信息。
  • wmic process:获取正在运行的进程列表。
  • wmic service:获取系统服务的信息。
  • wmic logicaldisk:获取逻辑磁盘驱动器的信息。
  • wmic nicconfig:获取网络适配器配置的信息。

示例用法:以下是使用wmic命令获取操作系统信息和CPU信息的示例:

  • wmic os get Caption, Version, OSArchitecture:获取操作系统的名称、版本和体系结构。
  • wmic cpu get Name, MaxClockSpeed, Manufacturer:获取CPU的名称、最大时钟速度和制造商。

对于更复杂的查询和操作,可以使用WQL(WMI查询语言)来结合wmic命令。WQL类似于SQL,可以用于过滤和排序数据,并执行高级的系统管理任务。

<think>好的,我现在需要帮助用户在QT使用FFmpeg实现GPU解码和GPU加速读取视频流。首先,我得回忆一下FFmpeg的硬件加速相关知识。用户之前提到了几篇引用,特别是引用[1]和引用[3],这些可能涉及软解码和RTSP流的处理,但用户现在需要的是GPU硬解。 首先,我得确定FFmpeg支持的硬件解码方法。常见的如CUDA(NVIDIA)、VAAPI(Intel)、DXVA2(Windows)等。用户可能使用的是哪种GPU?假设是NVIDIA的,那么可能需要使用CUDA或者NVDEC。不过FFmpeg中的硬件解码通常通过特定的解码器(如h264_cuvid)和硬件设备上下文来实现。 接下来,步骤应该包括初始化FFmpeg、打开输入文件或流、寻找视频流、创建硬件解码器实例、设置硬件设备上下文、解码帧,然后将数据从GPU传输到CPU进行后续处理或显示。不过用户可能希望直接在GPU上处理,减少CPU负担,所以需要考虑零拷贝或者GPU内存的直接访问。 在QT中显示的话,可能需要将解码后的帧从GPU内存映射到OpenGL或Vulkan纹理,这涉及到GPUGPU的传输,避免CPU复制。例如,使用OpenGL的像素缓冲区对象(PBO)或者CUDA-OpenGL互操作性。 不过具体的实现步骤可能如下: 1. 检查FFmpeg编译时是否启用了所需的硬件加速模块。例如,编译时加入--enable-cuda --enable-nvenc等选项。 2. 打开输入流,使用avformat_open_input和avformat_find_stream_info。 3. 查找视频流,确定流的编解码器ID,比如H.264。 4. 创建硬件解码器,例如使用AVCodec *decoder = avcodec_find_decoder_by_name("h264_cuvid"); 或者其他适合的硬件解码器。 5. 设置硬件设备上下文。可能需要创建AVBufferRef设备上下文,使用av_hwdevice_ctx_create,指定设备类型如AV_HWDEVICE_TYPE_CUDA。 6. 配置解码器上下文的hw_device_ctx,将设备上下文关联到解码器上下文。 7. 打开解码器,avcodec_open2。 8. 在解码循环中,读取数据包,发送到解码器(avcodec_send_packet),接收帧(avcodec_receive_frame)。此时,解码后的帧可能存储在GPU内存中,AVFrame的format字段会是硬件像素格式,比如AV_PIX_FMT_CUDA。 9. 如果需要处理或显示帧,需要将帧从GPU内存传输到CPU内存,可以使用av_hwframe_transfer_data,但这样会引入CPU拷贝。为了加速,可能需要直接在GPU上处理,比如使用OpenGL或CUDA进行后续渲染。 对于QT中的显示,如果使用QOpenGLWidget,可能需要将GPU中的图像数据转换为OpenGL纹理。例如,使用CUDA和OpenGL的互操作,注册OpenGL纹理作为CUDA资源,然后直接操作,避免内存拷贝。 此外,需要注意不同平台和GPU厂商的差异,比如在Windows上可能使用D3D11VA,Linux上用VAAPI或VDPAU,而NVIDIA卡则用CUDA相关的方法。 用户可能还需要配置FFmpeg的硬件设备参数,比如指定GPU设备索引,或者在多GPU情况下选择正确的设备。 可能遇到的问题包括:硬件解码器未正确初始化、帧格式不支持、内存映射失败等。需要确保FFmpeg版本支持所需的硬件解码,并且在编译时启用了相关选项。 总结步骤: - 初始化硬件设备上下文。 - 配置解码器使用硬件加速。 - 解码视频流,得到GPU内存中的帧。 - 在QT中通过OpenGL或其它GPU加速方式显示帧,避免CPU拷贝。 现在需要将这些步骤具体化,给出代码示例,并注意QT和FFmpeg的结合部分,比如如何将解码后的帧传递给QT的界面进行渲染。同时,需要引用用户提供的参考资料,比如引用[1]中提到的GPU硬解视频的方法,可能涉及到相关的代码结构。</think>在QT使用FFmpeg实现GPU解码和视频流加速需要结合硬件编解码API与QT的图形渲染能力。以下是具体实现步骤和代码示例: ### 一、环境准备 1. 编译FFmpeg时启用GPU支持: ```bash ./configure --enable-cuda --enable-nvdec --enable-cuvid --enable-libnpp ``` 2. QT项目配置`.pro`文件添加: ```pro LIBS += -lavcodec -lavformat -lavutil -lswscale -lcuda ``` ### 二、GPU解码实现流程 #### 1. 初始化硬件设备 ```cpp AVBufferRef *hw_device_ctx = nullptr; av_hwdevice_ctx_create(&hw_device_ctx, AV_HWDEVICE_TYPE_CUDA, "0", NULL, 0); ``` #### 2. 创建解码器上下文 ```cpp AVCodec* decoder = avcodec_find_decoder_by_name("h264_cuvid"); AVCodecContext* codec_ctx = avcodec_alloc_context3(decoder); codec_ctx->hw_device_ctx = av_buffer_ref(hw_device_ctx); avcodec_open2(codec_ctx, decoder, NULL); ``` #### 3. 解码循环处理 ```cpp AVPacket* pkt = av_packet_alloc(); AVFrame* frame = av_frame_new(); while (av_read_frame(format_ctx, pkt) >= 0) { if (pkt->stream_index == video_stream_idx) { avcodec_send_packet(codec_ctx, pkt); while (avcodec_receive_frame(codec_ctx, frame) >= 0) { // 帧数据在GPU内存中,format为AV_PIX_FMT_CUDA process_gpu_frame(frame); } } av_packet_unref(pkt); } ``` ### 三、GPUGPU零拷贝显示(OpenGL互操作) ```cpp // 创建CUDA-OpenGL互操作资源 cudaGraphicsResource* cuda_resource; cudaGraphicsGLRegisterImage(&cuda_resource, opengl_texture_id, GL_TEXTURE_2D, cudaGraphicsRegisterFlagsNone); // 映射资源 cudaArray_t array; cudaGraphicsMapResources(1, &cuda_resource, 0); cudaGraphicsSubResourceGetMappedArray(&array, cuda_resource, 0, 0); // 执行CUDA内存拷贝(GPUGPU) cudaMemcpy2DToArray(array, 0, 0, frame->data[0], frame->linesize[0], width*4, height, cudaMemcpyDeviceToDevice); ``` ### 四、视频流读取优化 使用`avformat_open_input`时添加硬件加速参数: ```cpp AVDictionary* opts = NULL; av_dict_set(&opts, "hwaccel", "cuvid", 0); avformat_open_input(&format_ctx, url, NULL, &opts); ``` ### 五、QT显示集成 在QOpenGLWidget中更新纹理: ```cpp void VideoWidget::updateTexture(AVFrame* frame) { glBindTexture(GL_TEXTURE_2D, texture_id); // 直接使用CUDA映射的纹理数据,无需CPU参与 update(); } ``` **注意要点**: 1. 帧格式转换建议使用`libnpp`实现GPU端处理[^1] 2. 多线程中需确保CUDA上下文绑定 3. 需要处理硬件解码器特有的内存对齐要求
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DS小龙哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值