题意:
在数组中找到符合这个的条件的数的的个数:
1. 1≤a<b<c<d≤n
2. Aa<Ab
3. Ac<Ad
思路:对一个在位置i的数,用树状数组就能知道前面比它小的数,类似地,找到后面比他小地数;
根据后面比他小的数这个进行打表记录在这个位置后能够符合的对数;
相乘一下就行了;
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 50000 + 10;
ll tree[maxn];
ll num2[maxn];//记录的在这个数的后面的成立的对数
struct Node
{
ll data;
ll l;//记录前面比这个数小的数的个数
ll r;//记录后面比这个数小的数的个数
}a[maxn];
ll inline lowbit(ll x)
{
return x & (-x);
}
ll get(ll x)
{
ll sum = 0;
for(ll i = x; i > 0; i -= lowbit(i))
{
sum += tree[i];
}
return sum;
}
void update(ll x,ll val)
{
for(ll i = x; i < maxn ; i += lowbit(i))
{
tree[i] += val;
}
}
int main()
{
int Tcase;
scanf("%d",&Tcase);
for(ll ii = 1; ii <= Tcase ; ii ++)
{
memset(num2,0,sizeof(num2));
int n;
scanf("%d",&n);
for(ll i = 1; i <= n; i ++)
{
scanf("%I64d",&a[i].data);
}
memset(tree,0,sizeof(tree) );
for(ll i = 1; i <= n ; i ++)
{
a[i].l = get(a[i].data);
update(a[i].data,1);
}
memset(tree,0,sizeof(tree));
for(ll i = n ; i >= 1; i --)
{
a[i].r = n - i - get(a[i].data);
update(a[i].data,1);
}
num2[n] = 0;
for(ll i = n - 1; i >= 1; i --)
{
num2[i] = num2[i + 1] + a[i].r;
}
ll ans = 0;
for(ll i = 2; i < n - 1; i ++)
{
ans += a[i].l * num2[i + 1];
// cout << a[i].l << " "<< num2[i + 1]<< endl;
}
cout << ans << endl;
}
return 0;
}