以前听过这个题用BFS写,还没想到能想到数论这边,佩服!
转载自:http://blog.csdn.net/v5zsq/article/details/52097459
设两个小瓶子容积分别为a,b,问题转化成通过两个小瓶子的若干次倒进或倒出操作得到(a+b)/2体积的可乐,设两个小瓶子被倒进或倒出x次和y次(这里的x和y是累加后的操作,即x=第一个瓶子倒出的次数-倒进的次数,y=第二个瓶子倒出的次数-倒进的次数),那么问题转化成:
所以|x+|y|的最小值为(c+d)/2,通过x和y的通解形式显然可以看出x和y一正一负,不妨设x<0,那么就是往第一个小瓶子倒进x次,第二个小瓶子倒出y次,但是由于瓶子容积有限,所以倒进倒出操作都是通过大瓶子来解决的,一次倒进操作后为了继续使用小瓶子还要将小瓶子中可乐倒回大瓶子中,倒出操作同理,所以总操作次数是(c+d)/2*2=c+d,但是注意最后剩下的(a+b)/2体积的可乐一定是放在两个小瓶子中较大的那个中,而不是再倒回到大瓶子中,所以操作数要减一,答案就是c+d-1
#include<bits/stdc++.h>
using namespace std;
int main()
{
int a,b,c;
while( ~ scanf("%d%d%d",&a,&b,&c))
{
if(a == 0 && b == 0 && c == 0)
break;
int g = __gcd(b,c);
if((b + c) / g % 2)
{
cout << "NO" << endl;
continue;
}
cout << (b + c) / g - 1 << endl;
}
return 0;
}