题意:选取两个点,分别得到两个点对应的对角线上的值,要求两个点走的对角线不能相交,然后求两个点的对角线的值最大。
思路:
对于一个n * n,求一个点的左对角线和右对角线的技巧为:
对于a[i][j]这个点对应的左对角线上的横坐标+纵坐标都等于i + j,右对角线 的i - j + n 都相等。
例如4 * 4 的:
i + j :为左对角线
i - j + n:右对角线
所以可用上面的下标统计左,右对角线元素的和,当统计一个点对应的对角线上的元素之和的时候,用左对角线上的值+右对角线上 - a[i][j].
PS:对于n *m的也适用。
这个题是统计两个点的对角线上的元素之和最大,并且不能相交,不能相交的话那么他们的i + j 不能奇偶性不能相同。
注意:d1,d2数组要开两倍大,一直wa就是因为这个情况。
#include<bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define clr(x,y) memset(x,y,sizeof(x))
typedef long long ll;
const int maxn = 2000 + 10;
int n;
ll a[maxn][maxn];
ll d1[maxn * 2],d2[maxn * 2];
int main()
{
while( ~ scanf("%d",&n))
{
clr(d1,0);clr(d2,0);
int ans = 0;
int x1 = 0,y1 = 0,x2 = 0,y2 = 0;
ll temp1 = 0,temp2 = 0;
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= n; j ++)
{
scanf("%I64d",&a[i][j]);
d1[i + j] += a[i][j];d2[i - j + n] += a[i][j];
}
}
for(int i = 1; i <= n; i ++)
{
for(int j = 1; j <= n; j ++)
{
ll t = d1[i + j] + d2[i - j + n] - a[i][j];
if((i + j) & 1)
{
if(temp1 <= t)temp1 = t,x1 = i,y1 = j;
}
else
if(temp2 <= t)temp2 = t,x2 = i,y2 = j;
}
}
printf("%I64d\n%d %d %d %d\n",temp1 + temp2,x1,y1,x2,y2);
}
return 0;
}