GPU视频解码之CUVID

   问题描述:项目中,需要对高清监控视频分析处理,经测试,其解码过程所占CPU资源较多,导致整个系统处理效率不高,解码成为系统的瓶颈。

解决思路:

      利用GPU解码高清视频,降低解码所占用CPU资源,加速解码过程。

一、OpenCV中的硬解码

      OpenCV2.4.6中,已实现利用GPU进行读取视频,由cv::gpu::VideoReader_GPU完成,其示例程序如下。

    int main(int argc, const char* argv[])  
    {  
        if (argc != 2)  
            return -1;  
        const std::string fname(argv[1]);  
        cv::namedWindow("GPU", cv::WINDOW_OPENGL);      
        cv::gpu::setGlDevice();  
          
        cv::gpu::GpuMat d_frame;  
        cv::gpu::VideoReader_GPU d_reader(fname);  
        d_reader.dumpFormat(std::cout);  
        for (;;)  
        {  
            if (!d_reader.read(d_frame))  
                break;  
            //....  
            cv::imshow("GPU", d_frame);  
            if (cv::waitKey(3) > 0)  
                break;  
        }  
        return 0;  
    }  
      阅读OpenCV中VideoReader_GPU源码,可发现其底层实现是借助于视频解码库CUVID。

二、视频解码库CUVID

     CUVID是基于CUDA的视频解码库,利用CUVID进行解码,主要包括以下四个步骤:

1.解析视频数据文件

2.在GPU端解码

3.转换解码后的数据(YUV420、NV12 ---> RGBA)

4.将RGBA数据显示出来

       下图为利用CUVID解码的伪代码示意图,其中VideoSource用来解析视频数据文件,VideoParser用来解码数据。

       VideoSource的回调函数HandleVideoData(),当VideoSource的状态设置为Started时,开始解析视频文件,并创建VideoParser,解码数据。

VideoParser的回调函数:

HandleVideoSequence() 创建解码器或重设解码器

HandlePictureDecode() 解码每帧视频数据

HandlePictureDisplay() 转换,处理,显示解码后的数据

OpenCV中VideoReader_GPU可以方便地利用GPU读取视频文件,加速解码过程,但OpenCV中VideoReader_GPU无法读取rtsp视频流数据。

这是因为CUVID中CuvideoSource不支持rtsp视频流数据,不能由rtsp地址创建VideoSource

三、CUVID解码rtsp视频流

基本思路:跳过VideoSource模块,利用其他方式解析视频数据文件。

基本步骤:

1.利用FFmpeg解析rtsp视频流

2.创建VideoParser

3.利用FFmpeg读取数据包(AVpacket)

4.将数据包传输到VideoParser(AVpacket ---> CUVIDSOURCEDATAPACKET)

5.VideoParser解码数据包

其示例伪代码如下图所示

http://www.cnblogs.com/dwdxdy/p/3244723.html


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值