题目
有一个棋盘,有一些棋子,要求把这些棋子通过和周围的八连块交换,每个格子有交换的次数限制,求从初始状态移动到目标状态的最小交换次数,无解输出-1。
分析
有几个坑点:
- 是八连块
- 交换的时候起点格子和终点格子都只交换一次,而其它格子交换两次
我们把点拆成三个点,其中对于一般的路径用最后一个点连接第一个点。
源点连中间那个店,汇点也连接中间那个点。
点与点之间边连接成inf的流量0的费用,点内部连接费用为1
然后根据贪心看当前结点有没有点连入或者连出,选择尽量可以多流的方式来为点内的三个分点连边。
最后由于每次交换我们都算了两个费用,所以答案要/2
代码
#include<queue>
#include<cctype>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1500,maxm=maxn*8,inf=1e9;
int np,first[maxn];
struct edge{
int from,to,next,cap,flow,cost;
}E[maxm<<1];
void add(int u,int v,int w,int c)
{
//if(w)cout<<u<<" "<<v<<" "<<w<<" "<<c<<endl;
E[++np]=(edge){u,v,first[u],w,0,c};
first[u]=np;
}
int n,m,s,t,nm,cnt1,cnt2;
int aa[maxn][maxn],b[maxn][maxn],c[maxn][maxn];
int getId1(int x,int y)
{
return (x-1)*m+y;
}
int getId2(int x,int y)
{
return (x-1)*m+y+nm;
}
int getId3(int x,int y)
{
return (x-1)*m+y+2*nm;
}
int dx[]={1,1,1,-1,-1,-1,0,0};
int dy[]={1,0,-1,1,0,-1,1,-1};
void Init()
{
int id1,id2,id3;
np=-1;
memset(first,-1,sizeof(first));
scanf("%d%d",&n,&m);
nm=n*m;
s=nm*3+1,t=s+1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
scanf("%1d",&aa[i][j]);
if(aa[i][j])
{
cnt1++;
id2=getId2(i,j);
add(s,id2,1,0);
add(id2,s,0,0);
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
scanf("%1d",&b[i][j]);
if(b[i][j])
{
cnt2++;
id2=getId2(i,j);
add(id2,t,1,0);
add(t,id2,0,0);
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
scanf("%1d",&c[i][j]);
if(c[i][j])
{
id1=getId1(i,j);id2=getId2(i,j);id3=getId3(i,j);
if(~c[i][j]&1)
{
add(id1,id2,c[i][j]/2,1);
add(id2,id1,0,-1);
add(id2,id3,c[i][j]/2,1);
add(id3,id2,0,-1);
}
else
{
if(aa[i][j])
{
add(id1,id2,c[i][j]/2,1);
add(id2,id1,0,-1);
add(id2,id3,c[i][j]/2+1,1);
add(id3,id2,0,-1);
}
else
{
add(id1,id2,c[i][j]/2+1,1);
add(id2,id1,0,-1);
add(id2,id3,c[i][j]/2,1);
add(id3,id2,0,-1);
}
}
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
int ni,nj;
id3=getId3(i,j);
for(int k=0;k<8;k++)
{
ni=i+dx[k],nj=j+dy[k];
if(ni<1 || nj<1 || ni>n || nj>m)continue;
id1=getId1(ni,nj);
add(id3,id1,9,0);
add(id1,id3,0,0);
}
}
}
int a[maxn],dist[maxn],fa[maxn],inq[maxn];
queue<int>q;
bool SPFA(int s,int t)
{
while(!q.empty())q.pop();
memset(a,0,sizeof(a));a[s]=inf;
memset(inq,0,sizeof(inq));q.push(s);
for(int i=1;i<=t;i++)dist[i]=inf;dist[s]=0;
fa[s]=-1;
while(!q.empty())
{
int i=q.front();q.pop();
inq[i]=0;
for(int p=first[i];p!=-1;p=E[p].next)
{
int j=E[p].to;
if(E[p].cap-E[p].flow)
if(dist[i]+E[p].cost<dist[j])
{
a[j]=min(a[i],E[p].cap-E[p].flow);
dist[j]=dist[i]+E[p].cost;
fa[j]=p;
if(!inq[j])inq[j]=1,q.push(j);
}
}
}
return a[t];
}
void mincost()
{
int flow=0,cost=0;
while(SPFA(s,t))
{
flow+=a[t];
cost+=dist[t]*a[t];
for(int p=fa[t];p!=-1;p=fa[E[p].from])
{
E[p].flow+=a[t];
E[p^1].flow-=a[t];
}
}
if(flow!=max(cnt1,cnt2))cost=-2;
printf("%d",cost/2);
}
int main()
{
//freopen("in.txt","r",stdin);
Init();
mincost();
return 0;
}