xiaomu_347
这个作者很懒,什么都没留下…
展开
-
Transformers模型量化
LLM模型量化部署原创 2024-11-06 15:20:20 · 36 阅读 · 0 评论 -
基于transformer构建训练自己的llava模型
2. 在`tokenizer_config.json`文件里面的`additional_special_tokens` 里面加上 `""`,可以验证一下,》修改qwen的tokenizer的相关文件:设置``这个token id。这一步感觉有点像pytorch的构建自己训练数据的datasets和dataloader。基于上面构建好的网络结构,下面首先准备好训练数据,当完成新模型的替换和生成后,测试一下新的模型。》util处理:打印其他信息。》,然后下载与训练模型。原创 2024-10-30 15:17:18 · 50 阅读 · 0 评论 -
LLM大模型学习总结
目前国内外开源/闭源LLM模型种类比较繁多,如何选择一个合适的基座模型来适配自己业务就显得很重要了,根据。针对目前较为主流的中文开源llm,从模型评测、初步体验和部署等方面,下面详细总结了4个比较常用的开源大模型特点。原创 2024-10-07 15:14:01 · 216 阅读 · 0 评论 -
Deepspeed/Accelerate框架学习笔记
在使用 DeepSpeed 训练大模型时,除了常规的模型设计和数据准备外,还需要特别关注内存管理混合精度通信优化和分布式训练的配置,以确保大模型能够高效、稳定地训练。参考链接:1、2、DeepSpeed-CSDN博客。原创 2024-09-07 18:02:32 · 237 阅读 · 0 评论 -
LanChain学习笔记
LangServe 提供了将 LangChain 的 runnables 和 chains 部署为 REST API 的能力,它是使用 FastAPI 来实现的。使用 LangServe 部署基于 LLM 的应用,会包含两个部分:Server(提供 LLM ChatModel 服务)、Client(调用模型服务)。下面通过一个例子来说明如何构建。原创 2024-05-27 21:16:43 · 121 阅读 · 0 评论 -
graphrag+ollama+neo4j本地化部署可视化使用
最近微软团队开源了一款数据工作流与转换工具 GraphRAG,利用LLM,帮助用户从非结构化文本数据中提取结构化数据,并完成数据索引。与传统的在文本片段中,基于语义查询的RAG不同,GraphRAG从原始文本中,提取数据,构建知识图谱,并利用这些结构化数据完成RAG任务。这取决于输入数据的大小、使用的模型以及使用的文本块大小(这些可以在文件中配置。要找到适当的部分,只需搜索配置。,您应该会看到两个部分,一个用于聊天端点,一个用于嵌入端点。pipeline完成后,您应该会看到一个名为的新文件夹,而在。原创 2024-07-12 18:39:15 · 2048 阅读 · 0 评论 -
基于ollama实现大模型llm快速部署
项目,llama.cpp 项目用 C/C++ 重写了推理代码,既避免了 PyTorch 引入的复杂依赖,又提供了更为广泛的硬件支持,包括纯 CPU 推理、Apple Silicon 在内的各类底层计算架构都得以充分发挥对应的推理加速。而作为价值约 8 美元/月的 Raycast AI 的平替,Raycast Ollama 实现了 Raycast AI 的绝大多数功能,且随着 Ollama 及开源模型的迭代,还将支持多模态等 Raycast AI 不支持的功能,可谓潜力无限。此外,还可以换用其他模型。原创 2024-05-24 15:09:25 · 248 阅读 · 0 评论 -
对于LLM与AIGC的一些简单认知
而对于AIGC模型而言,简单的以文生图stable diffusion(开源),mdjourney(收费)为主,还有sora(文生视频等),以及文生声音(chattts),数字人等等。原创 2024-06-07 16:29:08 · 89 阅读 · 0 评论 -
ollama+anything-llm构建自己的可视化操作llm
可见,AnythingLLM是一个功能丰富,集成度很高的RAG框架,其在github上的开源项目(anything-llm),已经有1万2千多Star。它不仅仅是一个聊天机器人,是一个全栈应用程序,旨在通过一个精心设计的用户界面,为客户提供与文档、资源等进行智能对话的最简单方式。该工具的一个独特之处在于,它可以在后台简单地运行,而不需要使用大量的内存或资源。在这种情况下,不同的工作区可以共享相同的记录,但不能相互交互,从而允许用户为不同的用例维护不同的工作区。4)两种聊天模式:会话模式和查询模式。原创 2024-05-26 23:12:03 · 221 阅读 · 0 评论 -
基于llm+rag构建自己的知识图谱
点击进去会有一个注册框,填写完成自己的信息之后会进入下载页面。同时需要注意保留页面左下角的激活码。按照下载页面的安装说明进行安装。这些数据库在存储和查询知识图谱数据时具有不同的特点和优势,选择适合自己需求的数据库取决于具体的应用场景和性能需求。至于llm和rag技术这里不做过多赘述,可以查看前面的学习笔记,下面主要介绍一下知识图谱,,密码在首次登录时设置。接下来就像mysql数据那样,可以直接通过Neo4j浏览器进行操作。在浏览器中打开Neo4j Web界面,并登录。而三元组是图中的基本数据单元。原创 2024-06-29 15:52:44 · 433 阅读 · 0 评论 -
记录一次完整的大模型实操
基于本地部署,脱离千篇一律的openai key的方式,完成基本问答->基于rag模型微调->加入上下文信息->构建智能agent不断迭代升级的模型版本,在此基础上还可以进行适配性调整,完成对基于langchain对llm模型的应用开发。原创 2024-06-11 13:07:03 · 127 阅读 · 0 评论 -
llama-factory学习使用笔记
想要对开源的llama大模型,针对自己的数据进行微调,这里推荐llama-factory项目,LLama Factory,这个工具能够高效且低成本地支持对 100 多个模型进行微调。LLama Factory 简化了模型微调的过程,并且易于访问,使用体验友好。当模型和数据都已经配置完成,接下来就是开始训练了,这里我采用的是基于llama2-7b的模型,加上自己的中文数据利用lora方法进行sft,其他的参数设定如下。这样刷新后在加载数据时就可以看到自己添加的数据了,还可以对内容进行可视化。原创 2024-06-17 15:37:58 · 1071 阅读 · 0 评论