Cache简介:
缓存(Cache )是计算机领域非常通用的概念。它介于应用程序和永久性数据存储源(如硬盘上的文件或者数据库)之间,其作用是降低应用程序直接读写永久性数据存储源的频率,从而提高应用的运行性能。缓存中的数据是数据存储源中数据的拷贝,应用程序在运行时直接读写缓存中的数据,只在某些特定时刻按照缓存中的数据来同步更新数据存储源。
缓存的物理介质通常是内存,而永久性数据存储源的物理介质通常是硬盘或磁盘,应用程序读写内在的速度显然比读写硬盘的速度快,如果缓存中存放的数据量非常大,也会用硬盘作为缓存的物理介质。
缓存的实现不仅需要作为物理介质的硬件,同时还需要用于管理缓存的并发访问和过期等策略的软件。因此,缓存是通过软件和硬件共同实现的。
1.1. 持久化层的缓存的范围
缓存的范围决定了缓存的生命周期以及可以被谁访问。缓存的范围分为三类。
1) 事务范围:缓存只能被当前事务访问。缓存的生命周期依赖于事务的生命周期,当事务结束时,缓存也就结束生命周期。在此范围下,缓存的介质是内存。事务可以是数据库事务或者应用事务,每个事务都有独自的缓存,缓存内的数据通常采用相互关联的对象形式。
2) 进程范围:缓存被进程内的所有事务共享。这些事务有可能是并发访问缓存,因此必须对缓存采取必要的事务隔离机制。缓存的生命周期依赖于进程的生命周期,进程结束时,缓存也就结束了生命周期。进程范围的缓存可能会存放大量的数据,所以存放的介质可以是内存或硬盘。缓存内的数据既可以是相互关联的对象形式也可以是对象的松散数据形式。松散的对象数据形式有点类似于对象的序列化数据,但是对象分解为松散的算法比对象序列化的算法要求更快。
3) 集群范围:在集群环境中,缓存被一个机器或者多个机器的进程共享。缓存中的数据被复制到集群环境中的每个进程节点,进程间通过远程通信来保证缓存中的数据的一致性,缓存中的数据通常采用对象的松散数据形式。
对大多数应用来说,应该慎重地考虑是否需要使用集群范围的缓存,因为访问的速度不一定会比直接访问数据库数据的速度快多少。
持久化层可以提供多种范围的缓存。如果在事务范围的缓存中没有查到相应的数据,还可以到进程范围或集群范围的缓存内查询,如果还是没有查到,那么只有到数据库中查询。事务范围的缓存是持久化层的第一级缓存,通常它是必需的;进程范围或集群范围的缓存是持久化层的第二级缓存,通常是可选的。
1.2. 持久化层的缓存的并发访问策略
当多个并发的事务同时访问持久化层的缓存的相同数据时,会引起并发问题,必须采用必要的事务隔离措施。
在进程范围或集群范围的缓存,即第二级缓存,会出现并发问题。因此可以设定以下四种类型的并发访问策略,每一种策略对应一种事务隔离级别。
1) 事务型(Transactional)策略:仅仅在受管理环境中适用。它提供了Repeatable Read事务隔离级别。对于经常被读但很少修改的数据,可以采用这种隔离类型,因为它可以防止脏读和不可重复读这类的并发问题。
2) 读写型(read-write)策略:提供了Read Committed事务隔离级别。仅仅在非集群的环境中适用。对于经常被读但很少修改的数据,可以采用这种隔离类型,因为它可以防止脏读这类的并发问题。
3) 非严格读写型(nonstrict-read-write)策略:不保证缓存与数据库中数据的一致性。如果存在两个事务同时访问缓存中相同数据的可能,必须为该数据配置一个很短的数据过期时间,从而尽量避免脏读。对于极少被修改,并且允许偶尔脏读的数据,可以采用这种并发访问策略。
4) 只读型策略(read-only):对于从来不会修改的数据,如参考数据,可以使用这种并发访问策略。
事务型并发访问策略是事务隔离级别最高,只读型的隔离级别最低。事务隔离级别越高,并发性能就越低。