论文Deep learning

一、这篇论文是2015年刊登在Nature上的综述性文章,关键点有:
1.深度学习用非线性模块、表示学习,能够提取很复杂抽象的特征。
2.网络调整的主要是权重,多用随机梯度下降法(SGD)、反向传播算法、预训练模型。
3.卷积神经网络CNN(通常由2-3个卷积层+非线性激活函数+池化层组成)的成功主要得益于GPU的性能、ReLU函数的运用,dropout正则化方法,其关键点有:信号的局部连接、共享权重、降采样、多层网络结构。
4.分布式特征表示是深度学习的一个核心概念:发现数据之间的语义相似性。从文本中学习的词向量表示在自然语言处理中运用广泛。循环神经网络RNN可以编码解码这种表示,而长短期记忆网络LSTM(用了特别的隐藏单元)或相关形式的带栅门的单元现在在机器翻译上表现挺好。
5.未来展望:无监督学习对于重新点燃深度学习的热潮起到了促进作用。有望结合卷积神经网络和循环神经网络并用强化学习(通常用马尔科夫决策过程来描述)来决定看哪里。尽管深度学习和简单释因已经被用在语音和手写识别上很久了,仍需要新范式通过大向量的操作来代替对符号表达基于规则的操作。
二、对自己的启发
回想起在模式识别课堂上学习过的BP反向传播算法和非线性激活函数,过拟合和欠拟合,偏差和方差的问题,基础还是有用的。
迁移学习(和RNN寻找的语义相似性(如一个圆,它有水平对称性、垂直对称性、和椭圆相似的性质)是否有点像?更多在小样本量学习(one-shot/low-shot)及meta learning(one-shot/zero-shot))和GAN(两个主要组件:生成器和鉴别器)也是近期较为热门的研究方向。

1. 概述类 首先是概述类论文,先后有2013年的“Representation Learning: A Review and New Perspectives”和2015年的”Deep Learning in Neural Networks: An Overview”两篇。 上传了较新的一篇。 3. 分布式计算 分布式计算方面论文涉及到具体解决计算能力的问题。有2012年的两篇论文Building High-level Features Using Large Scale Unsupervised Learning和Large Scale Distributed Deep Networks,其中后篇较好,其中第一次提到GPU对深度学习计算进行提速,其描述的情形大致是如何对多个GPGPU并行计算的深度学习框架进行编程。故上传了此篇 4. 具体算法 而后便是具体的算法方面的典型论文,包括K-means、单层非监督网络、卷积网络CNN、多级架构、Maxout和增强学习,论文列举如下: 2006年Notes on Convolutional Neural Networks 2009年What is the Best Multi-Stage Architecture for Object Recognition 2011年An Analysis of Single-Layer Networks in Unsupervised Feature Learning 2012年Learning Feature Representations with K-means 2012年Sparse Filtering (其中有RBM,auto-encoder等) 2014年Improving deep neural network acoustic models using generalized maxout networks 2014年Adolescent-specific patterns of behavior and neural activity during social reinforcement learning 2015年Reinforcement learning models and their neural correlates: An activation likelihood estimation meta-analysis和Human-level control through deep reinforcement learning
### 回答1: Deep learning,深度学习的英文版PDF可以通过网络搜索或在线学术资源网站获取。许多学术出版商如Springer、IEEE Xplore等提供了深度学习相关的英文书籍和论文的电子版。此外,也可以通过在线图书商店如Amazon等购买纸质书籍,然后自行扫描为PDF格式。最好的方法是使用英文关键词进行搜索,如"deep learning PDF",以便找到各种相关的资源。总之,要获取Deep learning的英文PDF,只需利用互联网资源进行搜索,将找到各种适合自己需求的材料。 ### 回答2: Deep learning是深度学习的英文版,是一种机器学习的方法,通过构建和模拟人类神经网络的结构和功能,来实现对数据的自动化处理和分析。 Deep learning的模型通常是由多个神经网络层(即深度)构成的。每个层都通过多个神经元相互连接,形成一个复杂的网络结构。这些神经网络层之间的连接权重会随着训练过程的进行进行调整,以逐渐提高模型的表现和准确度。 Deep learning在许多领域都有广泛的应用。在计算机视觉领域,它可以进行图像识别、目标检测和图像生成等任务。在自然语言处理领域,它可以用于文本分类、机器翻译和语义分析等任务。 Deep learning的优势在于它可以通过大量的数据和计算资源进行训练,并能够从数据中学习并提取更高级别的特征和模式。与传统的机器学习方法相比,Deep learning能够更好地处理具有复杂结构和大量参数的问题,提高模型的泛化能力和预测准确度。 为了学习Deep learning,可以阅读一些经典的英文PDF教材或论文。这些资源包括《Deep Learning》一书,由Ian Goodfellow、Yoshua Bengio和Aaron Courville等人合著的《Deep Learning Tutorial》以及Yann LeCun等人于2015年发表的《Deep Learning论文。通过阅读这些资源,可以了解到关于Deep learning的理论基础、模型架构和常用算法等知识。 最重要的是,深度学习是一门需要实践的科学,通过实际动手实验和项目实践,才能真正掌握和应用Deep learning。因此,建议通过阅读相关的英文资料,并进行实际的编程练习和项目实践,以加深对Deep learning的理解和应用能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值