1、先创建数据库:
create database dbsimple # 数据库名称
在sql server中创建表:
create table [dbsimple].[dbo].[cangku]
(id int identity(1,1) primary key, # 设置id自增长,并将其定位主键
name varchar(max), # 设定数据的类型
sex varchar(max) null, # 允许为空
grade text default'100' # 设置为text类型,并且默认值为100
)
删除表和删除表里面的数据(即清空表)
drop table test # 删除表
truncate table test # 清空表
2、插入数据:
insert into [dbsimple].[dbo].[cangku](name,sex) values ('zhangsan','nan') # 因为id是自增长的,所以不用输入数据;而grade有默认值,也可以不输入;
insert into [dbsimple].[dbo].[cangku](name,sex,grade) values ('zhangsan','nan','99') # 一个完整的输入,不适用默认值
3、选择前100行数据:
SELECT TOP 100 [id],[name],[sex] FROM [dbsimple].[dbo].[cangku]
4,、将sql server与python连接,在python上操作sql server
import pyodbc
conn = pyodbc.conn(r'DRIVER={SQL Server Native Client10.0};SERVER=.;DATABASE=数据库;UID=用户名;PWD=密码')
cur = conn.cursor()
sqlcom = 'sql server的命令语句'
cur.execute(sqlcom)
conn.commit()
5、从sql server中读取某一列,并将其转换为列表格式
import pyodbc
import pandas as pd
import numpy as np
conn = pyodbc.connect(r'DRIVER={SQL Server Native Client 10.0};SERVER=.;DATABASE=数据库;UID=用户;PWD=密码')
cur = conn.cursor()
sqlcom = 'select time,url from [dbsimple].[dbo].[test]' # 查询命令
df = pd.read_sql(sqlcom, con=conn)
print(df)
print(type(df)) # <class 'pandas.core.frame.DataFrame'>
df1 = np.array(df) # 使用numpy将DataFrame格式的数据转换为列表
df2 = df1.tolist()
print(df2)
# 转换后的数据类型为[['December 14, 2018', '1214ll1047.htm'], ['December 10, 2018', 'er1210ll1046.htm']]
for i in range(0, len(df2)):
exist_url = df2[i][1]
print(exist_url)