数塔问题
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=2084
数塔问题是很典型的dp问题。
该题大概的思路为:
因为从上往下算的话只知道局部最大,但局部最大不能保证整体最大,则需要从下往上面推。
具体看图:
假设这时在倒数第二层,那么可以根据下一层算出这层每个放歌的最大值,接着是倒数第三层,依次往上推,就可以获得最大值。
公式为:
a[i][j] = max(a[i+1][j]+a[i][j],a[i+1][j+1]+a[i][j]);
#include <bits/stdc++.h>
using namespace std;
int a[105][105];
int main(){
int tcase;
cin>>tcase;
while(tcase--){
int N;
cin>>N;
for(int i=1;i<=N;i++){
for(int j = 1;j<=i;j++){
cin>>a[i][j];
}
}
//开始DP
for(int i = N-1;i>=1;i--){//倒数第二行开始计算
for(int j =1;j<=i;j++){
a[i][j] = max(a[i+1][j]+a[i][j],a[i+1][j+1]+a[i][j]);//求出最大
}
}
cout<<a[1][1]<<endl;
}
return 0;
}
免费馅饼:
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1176
思路与数塔思路相似,都是采用dp思想,从下往上不断计算,直到算出最上层的每个空格的最大值,然后输出起点dp[0][5]的值即可。
公式为:
dp[i][j] = max(max(dp[i+1][j]+dp[i][j],dp[i+1][j-1]+dp[i][j]),dp[i+1][j+1]+dp[i][j]);
(没太注意输入结束的条件,并且又忘记了初始化二维数组和c值)。
#include <bits/stdc++.h>
using namespace std;
int dp[100010][12];
int c;
int main(){
int n,x,t;
while(cin>>n && n != 0){
c = 0;
memset(dp,0,sizeof(dp));
while(n--){
cin>>x>>t;
if(t>=c){
c = t;
}
dp[t][x]++;//每个位置同一时间的个数
}
//开始dp
for(int i = c-1;i>=0;i--){
for(int j = 0;j<=10;j++){
dp[i][j] = max(max(dp[i+1][j]+dp[i][j],dp[i+1][j-1]+dp[i][j]),dp[i+1][j+1]+dp[i][j]);
}
}
cout<<dp[0][5]<<endl;
}
return 0;
}
最长回文子串
首先弄清楚子串是连续的,回文子串就是从前往后和从后往前读都是一样的。
(一开始总是搞不清楚,今晚感觉看懂了就赶紧写一下)
①首先一个字符肯定是回文子串所以先设置a[i][i] = true;
②用一个dp[i][j],表示从i到j是否是回文子串,每一次判断dp[i][j]是否是回文子串,就先判断dp[i+1][j-1]是否是,如果不是,那就flase,否则为true。怎么实现就是用两个for循环,外层表示子串的尾,内层表示子串的头。
需要注意当 i == j时就是一个为true;而当i+1==j的时候,他俩相邻,中间没有子串,所以直接判断。
③边找边判断max 的ans
#include <bits/stdc++.h>
using namespace std;
bool dp[1010][1010];
int ans = 1;
int main(){
string a;
cin>>a;
memset(dp,0,sizeof(dp));
for(int i =0;i<1010;i++){
dp[i][i] = true;
}
for(int j = 0;j < a.length();j++){
for(int i = 0;i <= j;i++){
if(i==j) continue;
if(j==i+1) {if(a[i]==a[j]) dp[i][j] = true; continue;}
if(a[i] == a[j] && dp[i+1][j-1]){
dp[i][j] = true;
ans = max(ans,j-i+1);
}
}
}
cout<<"最长回文子串长度为:"<<ans<<endl;
return 0;
}