正则表达式(史上最全最实用)
简述
正则表达式式处理字符串的强大工具,拥有独立的语法和独立的处理引擎。
我们在大文本中匹配字符串时,有些情况用str自带的函数(比如find, in)可能可以完成,有些情况会稍稍复杂一些(比如说找出所有“像邮箱”的字符串,所有和julyedu相关的句子),这个时候我们需要一个某种模式的工具,这个时候正则表达式就派上用场了。
先来看看python中find与in的用法:
>>>str1 = "this is a string example ... wow!!!"
>>>str2 = "exam"
>>>print(str2 in str1) # str1包含str2,则返回True,否则返回False
True
>>>print("other" in str1)
False
>>>print(str1.find(str2)) # 从下标0开始搜索,当str2出现在str1中时,返回索引,否则返回-1
17
>>>print(str1.find("other"))
-1
>>>print(str1.find(str2, 10)) # 从下标10开始素搜索,当str2出现在str1中时,返回索引,否则返回-1
17
>>>print(str1.find(str2, 20)) # 从下标20开始素搜索,当str2出现在str1中时,返回索引,否则返回-1
-1
说起来正则表达式效率上可能不如str自带的方法,但匹配功能实在强大太多。对啦,正则表达式不是Python独有的,如果已经在其他语言里使用过正则表达式,这里的说明只需要简单看一看就可以上手啦。本博文主要参考了寒小阳的《Python正则表达式》,对极不常用的部分进行了删除,对常用部分增加了代码分析。
语法
我们先来回顾正则表达式的基本语法。当你要匹配 一个/多个/任意个 数字/字母/非数字/非字母/某几个字符/任意字符,想要 贪婪/非贪婪 匹配,想要捕获匹配出来的 第一个/所有 内容的时候,记得这里有个小手册供你参考。
验证工具
国内比较好用的正则表达式在线验证工具为:http://tool.oschina.net/regex/
该工具不仅可以验证正则表达式,还提供了常用的正则表达式,如身份证号码、邮箱、电话号码、日期等
正则表达式练习
我们一直想提高编写正则表达式的能力,但苦于找不到循序渐进的练习题。下面给出一个链接能进行循序渐进的进行正则表达式练习。想要提高正则表达式能力的同学们,戳我吧https://alf.nu/RegexGolf
Python案例
re模块
Python通过re模块提供对正则表达式的支持
使用re的一般步骤是:
- 将正则表达式的字符串编译为Pattern实例
- 使用Pattern实例处理文本并获得匹配结果(Match实例)
- 使用Match实例获取信息,进行其他的操作
import re
pattern = re.compile(r'Hello.*\!')
match = pattern.match('Hello xiaowoniu! How are you')
if match:
print(match.group())
Hello xiaowoniu!
re.compile(strPattern[, flag]):
这个方法是Pattern类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。
第二个参数flag是匹配模式,取值可以使用按位或运算符’|’表示同时生效,比如re.I | re.M。
当然,你也可以在regex字符串中指定模式,比如re.compile(‘pattern’, re.I | re.M)等价于re.compile(‘(?im)pattern’)
flag可选值有:
•re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
•re.M(MULTILINE): 多行模式,改变’^’和’$’的行为(参见上图)
•re.S(DOTALL): 点任意匹配模式,改变’.’的行为
•re.L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
•re.U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
•re.X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。以下两个正则表达式是等价的:
regex_1 = re.compile(r"""\d + # 数字部分
\. # 小数点部分
\d * # 小数的数字部分""", re.X)
regex_2 = re.compile(r"\d+\.\d*")
Match
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
Match对象的属性:
- string: 匹配时使用的文本
- re: 匹配时使用的Pattern对象
- pos: 文本中正则表达式开始搜索的索引,值与pattern.match()及pattern.search()的同名属性相同
- endpos: 文本中正则表达式结束搜索的索引,值与pattern.match()及pattern.search()的同名属性相同
- lastindex: 最后一个被捕获的分组在所有分组中的索引(从1开始数),如果没有分组被捕获,则返回None
- lastgroup:最后一个 被捕获的分组的别名,如果没有别名或没有分组被捕获,则返回None
Match对象的方法
- group([group1, …]): 获得一个或多个分组截取所得的字符串,指定多个参数时,将以元组返回。group1可以使用编号,也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0); 没有截获字符串的组返回None;截获多次的组,返回最后最后一次的截获的子串。如m.group(1, 2, 3)
- groups([default]): 以元组形式返回全部分组截获的字符串,相当于调用group(1, … , last)。default表示没有截获的字符串组以这个代替,default默认为空
- groupdict([default]): 返回有别名的组的别名为键,该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上
- start([group]): 返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引),group默认为0
- end([group]): 返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1),group默认为0
- span([group]): 返回元组 (start([group]), end([group]))
- expand(template): 将匹配到的分组带入到template中,然后返回。template中可以使用\id或\g、\g引用分组,但不能使用编号0。\id与\g
import re
m = re.match(r'(\w+) (\w+)(?P<sign>.*)', 'hello xiaowoniu!')
print('m.string: ', m.string)
print('m.re: ', m.re)
print('m.pos: ', m.pos)
print('m.endpos: ', m.endpos)
print('m.lastindex: ', m.lastindex)
print('m.lastgroup: ', m.lastgroup)
print('m.group(1, 2): ', m.group(1, 2))
print('m.groups: ', m.groups())
print('m.groupdict(): ', m.groupdict())
print('m.start(2): ', m.start(2))
print('m.span(2): ', m.span(2))
print("m.expand(r'\\2 \\1\\3'): ", m.expand(r'\2 \1\3'))
m.string: hello xiaowoniu!
m.re: re.compile(‘(\w+) (\w)(?P.*)’)
m.pos: 0
m.endpos: 16
m.lastindex: 3
m.lastgroup: sign
m.group(1, 2): (‘hello’, ‘xiaowoniu’)
m.groups: (‘hello’, ‘xiaowoniu’, ‘!’)
m.groupdict(): {‘sign’: ‘!’}
m.start(2): 6
m.span(2): (6, 15)
m.expand(r’\2 \1\3’): xiaowoniu hello!
Pattern
Pattern对象是一个编译好的正则表达式,通过Pattern对象提供的一系列方法可以对文本进行匹配查找
Pattern不能直接进行实例化,必须使用re.compile()
进行构造
Pattern提供了几个可读属性用于获取表达式的相关信息:
- pattern:编译时使用的正则表达式字符串
- flags:编译时使用的匹配模式(数字形式)
- groups:表达式中分组的数量
- groupindex:以表达式中有别名的组的别名为键,以该组对应的编号为值的字典,没有别名的组不包含在内
import re
p = re.compile(r'(\w+) (\w+)(?P<sign>.*)', re.DOTALL)
print('p.pattern: ', p.pattern)
print('p.flags: ', p.flags)
print('p.groups: ', p.groups)
print('p.groupindex: ', p.groupindex)
p.pattern: (\w+) (\w+)(?P.*)
p.flags: 48
p.groups: 3
p.groupindex: {‘sign’: 3}
使用pattern
match(string[, pos[, endpos]])
或者match(pattern, string[, flags])
这个方法将从string的pos下标处尝试匹配pattern,pos默认值为0(pos处必须与正则表达式开始对应上)
- 如果匹配结束后仍可匹配,则返回Match对象
- 如果匹配过程中无法匹配,或者匹配未结束就达到endpos,则返回None
- pos、endpos默认为0、len(string)
- 注意:这个方法并不是完全匹配。当pattern结束时,string还有剩余字符,仍然视为匹配成功。要想完全匹配,需要在pattern末尾加上结束标识符”$”
search(string[, pos[, endpos]])
或者search(pattern, string[, flags])
与match方法类似,区别在于:pos处无需与正则表达式开始对应上,后面匹配上也可以
p = re.compile(r'X.*u')
print(p.match('Hello Xiaowoniu!', 6))
print(p.match('Hello Xiaowoniu!', 5))
print(p.search('Hello Xiaowoniu!', 5))
<_sre.SRE_Match object; span=(6, 15), match=’Xiaowoniu’>
None
<_sre.SRE_Match object; span=(6, 15), match=’Xiaowoniu’>
- `split(string[, maxsplit])` 或者 `re.split(pattern, string[, maxsplit])`
- 按照能够匹配的子串将string分割为列表
- maxsplit为最大分割次数,默认按最大分割次数来
p = re.compile(r'\d+')
p.split("one1two2three3four4", 2)
p.split("one1two2three3four4", 3)
p.split("one1two2three3four4", 4)
p.split("one1two2three3four4")
[‘one’, ‘two’, ‘three3four4’]
[‘one’, ‘two’, ‘three’, ‘four4’]
[‘one’, ‘two’, ‘three’, ‘four’, ”]
[‘one’, ‘two’, ‘three’, ‘four’, ”]
findall(string[, pos[, endpos]])
或者re.findall(pattern, string[, flag])
- 从pos开始搜索,以列表形式返回所有匹配的子串
p = re.compile(r'\d+')
p.findall("one1two2three3four4")
p.split("one1two2three3four4", 4)
p.split("one1two2three3four4", 4, 6)
[‘1’, ‘2’, ‘3’, ‘4’]
[ ‘2’, ‘3’, ‘4’]
[]
finditer(string[, pos[, endpos]])
或者re.finditer(pattern, string[, flag])
- 从pos开始搜索,返回一个顺序访问每个匹配结果(Match对象)的迭代器
p = re.compile(r'\d+')
iters = p.finditer("one1two2three3four4")
for item in iters:
print(item.group())
1
2
3
4
- `sub(repl, string[, count])` 或者 `re.sub(pattern, repl, string[, count])` 使用repl替换string中每一个匹配的子串后返回替换后的字符串。
- 当repl是一个字符串时,可以使用\id或\g、\g引用分组,但不能使用编号0。
- 当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。 count用于指定最多替换次数,不指定时全部替换。
s = "i say, hello xiaowoniu!"
p = re.compile(r'(\w+) (\w+)')
p.sub(r'\2 \1', s)
def fn(m):
return m.group(1).title() + " " + m.group(2).title()
p.sub(fn, s)
‘say i, xiaowoniu hello!’
‘I Say, Hello Xiaowoniu!’
- `subn(repl, string[, count])` 或者 `re.subn(pattern, repl, string[, count])` 返回元组(sub(repl, string[, count]), 替换次数)
s = "i say, hello xiaowoniu!"
p = re.compile(r'(\w+) (\w+)')
p.subn(r'\2 \1', s)
(‘say i, xiaowoniu hello!’, 2)
\b与\B
\b为单词的边界
单词边界就是单词和符号之间的边界,这里的单词可以是中文字符,英文字符,数字(指的不是\w);符号可以是中文符号,英文符号,空格,制表符,换行
相反,\B指的是非单词的边界
例如:我们我们想判断句子My cat is bad.中是否包含cat(忽略大小写)这个单词,我们可以使用正则表达式r’\bcat\b’来匹配
s = "My cat is bad."
p = re.compile(r'\bcat\b', re.I)
searched = p.search(s)
if searched:
pirnt(searched.group())
cat