小魏的修行路

Talk is cheap. Show me the code.

【模式识别】OpenCV中使用神经网络 CvANN_MLP

OpenCV的ml模块实现了人工神经网络(Artificial Neural Networks, ANN)最典型的多层感知器(multi-layer perceptrons, MLP)模型。由于ml模型实现的算法都继承自统一的CvStatModel基类,其训练和预测的接口都是train(),pre...

2013-06-05 09:43:11

阅读数:60422

评论数:33

【模式识别】反向传播神经网络 BPNN

回顾感知器学习算法,其核心思想是梯度下降法,即以训练样本被错分的程度为目标函数,训练中每次出现错误时便使权系数朝着目标函数相对于权系数负梯度方向更新,知道目标中没有被错分的样本为止。而多层感知器模型中,神经元传递函数是阶跃函数,输出端的无耻只能对最后一个神经元系数求梯度,无法对其他权系数求梯度,所...

2013-06-04 16:45:16

阅读数:26456

评论数:6

【模式识别】多层感知器 MLP

由前面介绍看到,单个感知器能够完成线性可分数据的分类问题,是一种最简单的可以“学习”的机器。但他无法解决非线性问题。比如下图中的XOR问题:即(1,1)(-1,-1)属于同一类,而(1,-1)(-1,1)属于第二类的问题,不能由单个感知器正确分类。即在Minsky和Papert的专著《感知器》所分...

2013-06-03 02:04:18

阅读数:48220

评论数:4

【模式识别】最小平方误差判别 MSE

最小平方误差判别准则函数对于上一节提出的不等式组:在线性不可分的情况下,不等式组不可能同时满足。一种直观的想法就是,希望求一个a*使被错分的样本尽可能少。这种方法通过求解线性不等式组来最小化错分样本数目,通常采用搜索算法求解。为了避免求解不等式组,通常转化为方程组:矩阵形式为:。方程组的误差为:,...

2013-06-02 15:36:44

阅读数:20220

评论数:3

【模式识别】感知器 Perceptron

基本概念线性可分:在特征空间中可以用一个线性分界面正确无误地分开两 类样本;采用增广样本向量,即存 在合适的增广权向量 a 使得:则称样本是线性可分的。如下图中左图线性可分,右图不可分。所有满足条件的权向量称为解向量。权值空间中所有解向量组成的区域称为解区。通常对解区限制:引入余量b,要求解向量满...

2013-06-01 13:41:03

阅读数:24622

评论数:6

提示
确定要删除当前文章?
取消 删除