2020-09-21

第三次

学习目标

  1. 学习特征预处理、缺失值、异常值处理、数据分桶等特征处理方法
  2. 学习特征交互、编码、选择的相应方法
  3. 数据预处理常见方法
  4. 缺失值的填充: 时间格式处理 对象类型特征转换到数值
  5. 异常值处理: 基于3segama原则 基于箱型图
  6. 数据分箱: 固定宽度分箱b 分位数分箱离散数值型数据分箱连续数值型数据分箱
  7. 特征交互a. 特征和特征之间组合b. 特征和特征之间衍生c. 其他特征衍生的尝试
  8. 特征编码a. one-hot编码b. label-encode编码6. 特征选择a.
  9. 1 Filterb. 2 Wrapper (RFE)c. 3 Embedded
    #缺失值填充
    #把所有缺失值替换为指定的值
    data_train = data_train.fillna(0)
    # 向用缺失值上面的值替换缺失值
    data_train = data_train.fillna(axis=0,method='ffill')
     #纵向用缺失值下面的值替换缺失值,且设置最多只填充两个连续的缺失值
     data_train = data_train.fillna(axis=0,method='bfill',limit=2)
     #查看缺失值数量
     data_train.isnull().sum()
    
    
    
    #按照平均数填充数值型特征
    data_train[numerical_fea] = data_train[numerical_fea].fillna(data_train[numerical_fea].median())
     data_test_a[numerical_fea] = data_test_a[numerical_fea].fillna(data_train[numerical_fea].median())
    #按照众数填充类别型特征
    data_train[category_fea] = data_train[category_fea].fillna(data_train[category_fea].mode())
    data_test_a[category_fea] = data_test_a[category_fea].fillna(data_train[category_fea].mode())
    
    #时间特征处理
    1 #转化成时间格式
    for data in [data_train, data_test_a]:
    	data['issueDate'] = pd.to_datetime(data['issueDate'],format='%Y-%m-%d')
    	startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d')
    	#构造时间特征
    	data['issueDateDT'] = data['issueDate'].apply(lambda x: x-startdate).dt.days
    data_train['employmentLength'].value_counts(dropna=False).sort_index()	
    
    
    
    
    #对象特征转换为数值
    def employmentLength_to_int(s):
        if pd.isnull(s):
        	return s
        else:
        return np.int8(s.split()[0])
    for data in [data_train, data_test_a]:
    	data['employmentLength'].replace(to_replace='10+ years', value='10 years', inplace=True)
    	data['employmentLength'].replace('< 1 year', '0 years', inplace=True)
    	data['employmentLength'] =data['employmentLength'].apply(employmentLength_to_int)
    data['employmentLength'].value_counts(dropna=False).sort_index()	
    #1. 对earliesCreditLine进行预处理
    data_train['earliesCreditLine'].sample(5)
    for data in [data_train, data_test_a]:
    	data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:]))
    
    

     

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值