【数据结构】二叉树的使用

寻找双亲结点
//查找双亲
BtNode* FindParent(BtNode* root, BtNode* pos)
{
	if (root == NULL || pos == NULL)
		return NULL;
	if (root->leftchild == pos || root->rightchild == pos)
	{
		return root;
	}
	else
	{
		BtNode* p = FindParent(root->leftchild, pos);
		if (p == NULL)
		{
			p = FindParent(root->rightchild, pos);
		}
		return p;
	}
}

查找val值
//二叉树中查找val是否存在
BtNode* Find(BtNode* p, Element val)
{
	if (p == NULL || p->data == val)
	{
		return p;
	}
	else
	{
		BtNode* q = Find(p->leftchild, val);
		if (q == NULL)
		{
			q =  Find(p->rightchild, val);
		}
		return q;
	}
	
}
BtNode* FindValue(BtNode* p, Element val)
{
	if (p == NULL) return NULL;
	else
	{
		return Find(p, val);
	}
}
二叉树空间释放
//二叉树的clear函数
void Clear(BtNode* p)
{
	if (p != NULL)
	{
		Clear(p->leftchild);
		Clear(p->rightchild);
		delete p;
	}
}
计算二叉树结点个数
//计算二叉树结点个数
int BtCount(BtNode* p)
{
	if (p == NULL)
		return 0;
	return	BtCount(p->leftchild) + BtCount(p->rightchild) + 1;
}
计算二叉树的深度
//计算二叉树的深度
//分治策略:左子树深度>右子树深度? 左:右 + 1
int Highth(BtNode* p)
{
	if (p == NULL) return 0;

	else
	{
		return std::max(Highth(p->leftchild), Highth(p->rightchild)) + 1;
	}
}
水平遍历(层次)
//水平遍历
void LevelOrder(BtNode* p)
{
	if (p == NULL) return;
	queue<BtNode*> qu;
	qu.push(p);
	while (!qu.empty())
	{
		p = qu.front();
		qu.pop();
		cout << p->data << " ";
		if (p->leftchild != NULL)
		{
			qu.push(p->leftchild);
		}
		if (p->rightchild != NULL)
		{
			qu.push(p->rightchild);
		}
	}
}
Z型遍历
//Z打印二叉树结点
void ZPrint(BtNode* p)
{
	if (NULL == p)
		return;
	stack<BtNode*> ast;
	stack<BtNode*> bst;
	ast.push(p);

	while (!ast.empty() || !bst.empty())
	{
		while (!ast.empty())
		{
			p = ast.top();
			ast.pop();
			cout << p->data << " ";

			if (p->leftchild != NULL)
			{
				bst.push(p->leftchild);
			}
			if (p->rightchild != NULL)
			{
				bst.push(p->rightchild);
			}
		}
		while (!bst.empty())
		{
			p = bst.top();
			bst.pop();
			cout << p->data << " ";

			if (p->rightchild != NULL)
			{
				ast.push(p->rightchild);
			}
			if (p->leftchild != NULL)
			{
				ast.push(p->leftchild);
			}
		}
	}
}


判断是否是满二叉树
//判断一个二叉树是否是满二叉树
bool IsFullBt(BtNode* p)
{
	if (NULL == p)
		return false;
	//深度k  1 2 4 8
	int k = Highth(p);
	//结点个数 == 
	return BtCount(p) == (int)(pow(2, k) - 1);
}
//判断一个二叉树是否是满二叉树
bool IsFullBt(BtNode* p)
{
	if (NULL == p)
		return false;
	int s = 1;
	bool tag = true;	
	//两个队列实现
	queue<BtNode*> aqu;
	queue<BtNode*> bqu;
	aqu.push(p);
	while (!aqu.empty() || !bqu.empty())
	{
		if (s != aqu.size())
		{
			tag = false;
			break;
		}
		while (!aqu.empty())
		{
			p = aqu.front();
			aqu.pop();
			if(p->leftchild != NULL ) bqu.push(p->leftchild);
			if (p->rightchild != NULL) bqu.push(p->rightchild);
		}
		s += s;
		
		if (s != bqu.size())
		{
			tag = false;
			break;
		}
		while (!bqu.empty())
		{
			p = bqu.front();
			bqu.pop();
			if (p->leftchild != NULL) aqu.push(p->leftchild);
			if (p->rightchild != NULL) aqu.push(p->rightchild);
		}
		s += s;
	}
	return tag;
}
判断是否是完全二叉树
//判断是否是一个完全二叉树
bool IsCompleteBTree(BtNode* p)
{
	if (NULL == p) return false;
	bool tag = true;
	queue<BtNode*> qu;
	qu.push(p);
	while (!qu.empty())
	{
		p = qu.front();
		qu.pop();
		if (p == NULL)
		{
			break;
		}
		qu.push(p->leftchild);
		qu.push(p->rightchild);
	}
	while (!qu.empty())
	{
		p = qu.front();
		qu.pop();
		if (p != NULL)
		{
			tag = false;
			break;
		}
	}
	return tag;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值